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Phytoliths are noncrystalline minerals that form inside cells and cell walls of different parts of plants. Organic carbon in living 
cells can be occluded in phytoliths during plant growth. It has been documented that the occluded carbon within phytoliths is an 
important long-term terrestrial carbon reservoir that has a major role in the global carbon cycle. Common millet and foxtail millet 
have become typical dry-farming crops in China since the Neolithic Age. The study of carbon conservation within phytoliths in 
these crops could provide insights into anthropogenic influences on the carbon cycle. In this study, we analyzed the carbon con-
tent in phytoliths of common millet and foxtail millet. The results indicated that (1) common millet and foxtail millet contained 
0.136% ± 0.070% and 0.129% ± 0.085% phytolith-occluded carbon (PhytOC) on a dry mass basis, respectively; (2) based on the 
mean annual production of common millet and foxtail millet in the last 10 years, the phytolith occluded carbon accumulation rate 
of common millet and foxtail millet was approximately 0.023 ± 0.015 and 0.020 ± 0.010 t CO2 ha−1 a−1, respectively; (3) assuming 
a similar phytolith occluded carbon accumulation rate as for common millet (the highest accumulation rate was 0.038 t CO2 ha−1 a−1), 
this could result in the sequestration of 2.37 × 106 t CO2 per year for the 62.4 × 106 ha dry-farming crops in China. Although there 
was a decline in the annual production rate and planting area of foxtail millet during 1949 to 2008, the total phytolith carbon se-
questration rate was 7×106 t CO2 within the 60-year period. However, phytolith occluded carbon has not yet been fully considered 
as a global carbon sink. Also, this carbon fraction is probably one of the best candidates for the missing carbon sink.  
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The carbon cycle plays a central role in global change and 
its importance has already been recognized by the Interna-
tional Geosphere-Biosphere Programme (IGBP) [1–4]. There 
is an imbalanced budget (or some missing carbon) in the 
carbon cycle which has been known for nearly half-century, 
however, the mechanism for (and distribution of) this car-
bon has not yet been identified completely [5–8]. Many 
previous studies have suggested that terrestrial ecosystems 
in the mid- and high-latitudes of the Northern Hemisphere 
might be functioning as a significant carbon sink [9–11]. 
The pedosphere, a part of terrestrial ecosystems, contains a 

large amount of carbon, that is about 1550 Pg carbon in soil 
inorganic matter and 950 Pg carbon in soil organic matter. 
A minor variation in such big carbon pool may have a sig-
nificant effect on the carbon sink [12]. Consequently, the 
soil was recognized as a probable candidate for the location 
of the missing carbon sink [13], and thus a greater under-
standing of its carbon pools has increased our knowledge of 
the importance of this part of the carbon cycle.    

Phytoliths, also called silica phytoliths, are noncrystalline 
minerals that deposit inside cells and cell walls of different 
parts of plants when soluble silica is absorbed by the roots 
[14,15]. Phytoliths can occlude some organic carbon (phy-
tolith occluded carbon (PhytOC)) incorporated during plant 
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growth [16]. When plants die and decay, phytoliths are re-
leased into the soil and sediment. PhytOC can remain in the 
soil for a long time even being present in Tertiary [17] and 
Late Cretaceous sediments [18]. Recent studies indicate that 
PhytOC from bamboo vegetation globally could sequester 
15.6×106 t of CO2 per year. These authors argued that if all 
4.1×109 ha of potentially arable land was used to grow 
bamboo, the global potential for phytolith carbon sequestra-
tion was 1.5×109 t CO2 a

−1. This carbon sequestration rate 
could therefore account for 11% of the current increase in 
atmospheric CO2 [19]. PhytOC is a recalcitrant fraction of 
soil carbon [20] which has drawn particular attention from 
many researchers in the study of the terrestrial carbon cycle 
[21]. 

Early studies have analyzed the physical and chemical 
properties of phytoliths and found that they can occlude 
carbon to levels ranging from 0.2% to 5.8% [22–25]. Cur-
rent studies on phytoliths have mainly concentrated on the 
paleoclimate [26–29], archaeobotany [30–32], radiocarbon 
AMS measurements [23,24], carbon isotopes [33–35] and 
plant taxonomy [36,37]. However, far fewer studies have 
examined the PhytOC content of different plants. Although 
there already have been some studies on the PhytOC con-
tent of bamboo and sugarcane [19,38], to date, very little is 
known about other higher silicon accumulating plants, such 
as Sorghum bicolor, Oryza sativa, Panicum miliaceum and 
Setaria italica. 

Previous research has claimed that the carbon seques-
tered by crops in the form of PhytOC was considered as 
zero because the litter decayed and decomposed quickly 
[39]. As China has a long farming history and a large area 
of arable land, it is necessary to further explore the im-
portance of PhytOC which may help to identify agricultural 
carbon sinks in the past and re-evaluate the carbon sink po-
tential of current agricultural land. This study aims to (1) 
examine the PhytOC content of foxtail millet and common 
millet, (2) estimate the PhytOC accumulation rate of foxtail 
millet and common millet, and (3) estimate the amount of car-
bon sequestered by PhytOC from dry-farming crops in China. 

1  Materials and methods  

In this study, eight millet species, including foxtail millet 

(Setaria italica) and common millet (Panicum miliaceum), 
were collected from Beijing, Gansu and Liaoning provinces 
during the harvest season (Table 1). The root of the millet 
was discarded and rest of the plant such as the stem leaf and 
spike were placed in a beaker for further treatment. All of 
the millet samples were rinsed twice in distilled water and 
placed in an ultrasonic bath for 20 min, and then dried at 
70°C for 24 h. Four parallel samples were selected from 
each species of millet.  

The method for phytolith extraction was described in de-
tail in previous work [15,40]. In this study, a revision to the 
wet oxidation method was made that aimed to digest the 
organic matter more completely. The detailed steps are as 
follows: (1) Weigh about 1 g dry sample into a tube (to the 
nearest 0.01 mg); (2) add 5 mL HNO3 into the tube and heat 
in a water bath at 80°C until reaction stops, then centrifuge 
2 times at 3000 r/min for 5 min and decant supernatant; (3) 
add 10% HCl into a tube and heat in a water bath at 80°C 
for 30 min, then centrifuge at 3000 r/min for 5 min and de-
cant; (4) add 5 mL HNO3 into the tube and heat to ensure 
removal of all organic material, then centrifuge and decant; 
(5) add 5 mL H2SO4 into the tube and heat in a water bath 
for at least 1 h; (6) cool to room temperature, and reheat in a 
water bath, and add 30% H2O2 slowly until the liquid clears; 
and (7) centrifuge 4 times at 3000 r/min for 5 min, then dry 
phytoliths in the tube at 70°C for 24 h.  

Weigh the phytoliths using an analytical balance and 
check the samples under an optical microscope at 400× mag-
nification to ensure no organic material exists. As Figure 1 
shows, all the organic material has been digested. The Phy-
tOC content was determined using an Elemental Analyzer 
vario EL (Elementar Analysen systeme GmbH, Germany). 

2  Results 

As shown in Table 2, the millet phytolith content varied 
from 3.027% to 18.787%. The PhytOC content of millet 
also show a significant variation which ranged from 0.88% 
to 4.775%. Common millet yielded a higher mean value of 
PhytOC content than foxtail millet phytolith content (2.51% 
vs. 1.920%). The relationship among PhytOC content on a 
dry weight basis, the occluded carbon of phytoliths and 
phytolith content was examined. The results indicated that  

Table 1  Location and samples for each millet species 

Sample code Millet species (breed) Location Samples (N) 

GSFM Setaria italica Gansu Xifeng District, Gansu Province 4 

LNFM-A Setaria italica Liaoning A Suizhong County, Liaoning Province 4 

LNFM-B Setaria italica Liaoning B Suizhong County, Liaoning Province 4 

BJFM Setaria italica Beijing Mengtougou District, Beijing 4 

GSCM-A Panicum miliaceum Gansu A Xifeng District, Gansu Province 4 

GSCM-B Panicum miliaceum Gansu B Xifeng District, Gansu Province 4 

LNCM Panicum miliaceum Liaoning Suizhong County, Liaoning Province 4 

BJCM Panicum miliaceum Beijing Mengtougou District, Beijing 4 
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Figure 1  Phytoliths extracted from the millet samples (Both are from foxtail millet and black bar represents 10 μm). 

Table 2  Dry weight, plant phytolith content, percentage phytolith content, percentage of PhytOC, and percentage PhytOC content on a dry weight basis 

Sample code 
Dry weight  

(g) 
Phytolith content  

in plant (g) 
Percentage of phytolith  

content (%) 
Percentage of PhytOC  

in phytoliths (%) 
Percentage of PhytOC 
content/dry weight (%) 

GSFM-1  1.079 0.049 4.541 4.775 0.217 

GSFM-2 1.075 0.058 5.395 2.085 0.112 

GSFM-3 1.051 0.063 5.994 2.59 0.155 

GSFM-4 1.040 0.042 4.038 4.605 0.186 

LNFM A-1 1.035 0.065 6.280 1.03 0.065 

LNFM A-2 1.014 0.065 6.410 1.17 0.075 

LNFM A-3 1.010 0.060 5.941 1.005 0.060 

LNFM A-4 1.033 0.065 6.292 0.97 0.061 

LNFM B-1 1.050 0.061 5.810 1.06 0.062 

LNFM B-2 1.015 0.076 7.488 0.98 0.073 

LNFM B-3 1.012 0.063 6.225 1.12 0.070 

LNFM B-4 1.037 0.106 10.222 1.15 0.118 

BJFM-1 1.058 0.094 8.885 0.94 0.084 

BJFM-2 1.004 0.142 14.143 0.88 0.124 

BJFM-3 1.059 0.138 13.031 1.85 0.241 

BJFM-4 1.073 0.086 8.015 4.515 0.362 

Mean±SD  0.077 ± 0.029 7.419 ± 2.860 1.920 ± 1.427 0.129 ± 0.085 

GSCM A-1 1.054 0.050 4.744 2.92 0.139 

GSCM A-2 1.019 0.048 4.711 4.62 0.218 

GSCM A-3 1.017 0.055 5.408 3.665 0.198 

GSCM A-4 1.014 0.043 4.241 3.05 0.129 

GSCM B-1 1.037 0.044 4.243 3.86 0.164 

GSCM B-2 1.033 0.038 3.679 3.39 0.125 

GSCM B-3 1.041 0.042 4.035 2.95 0.119 

GSCM B-4 1.014 0.041 4.043 4.635 0.187 

LNCM-1 1.022 0.192 18.787 1.45 0.272 

LNCM-2 1.009 0.147 14.569 1.495 0.218 

LNCM-3 1.015 0.058 5.714 1.815 0.104 

LNCM-4 1.002 0.088 8.782 1.245 0.109 

BJCM-1 1.024 0.031 3.027 1.345 0.041 

BJCM-2 1.034 0.043 4.159 1.295 0.054 

BJCM-3 1.020 0.034 3.333 1.215 0.040 

BJCM-4 1.036 0.049 4.730 1.21 0.057 

Mean±SD  0.063 ± 0.044 6.138 ± 4.384 2.51 ± 1.265 0.136 ± 0.070 
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PhytOC content on a dry weight basis is correlated with the 
occluded carbon of phytoliths (P < 0.01, R2

 = 0.434).  

3  Discussion  

3.1  Phytoliths and PhytOC  

Plants have different abilities to yield phytoliths. In general, 
angiosperms accumulate more phytoliths in their shoots 
than gymnosperms. Within the angiosperms, the Poaceae 
accumulate more phytoliths than other monocot species [41]. 
Whether different plants yield differing amounts of PhytOC, 
and what factors control this in each remain to be found. To 
answer the former question is beyond the scope of this pa-
per. However, our analysis indicates that there is no signifi-
cant correlation between phytolith yield and percentage 
PhytOC content on a dry weight basis in eight species of 
millet (P = 0.071, R2

 = 0.105), but the percentage PhytOC 
content on a dry weight basis is correlated with the occluded 
carbon of phytoliths (P < 0.01, R2

 = 0.434). Studies on wheat 
phytoliths have also demonstrated that there was no rela-
tionship between phytolith yield and percentage PhytOC 
content on a dry weight basis (P = 0.047, R2

 = 0.075) and a 
strong correlation also existed between percentage PhytOC 
content on a dry weight basis and the occluded carbon con-
tent of the phytoliths themselves [42]. These results all 
show that percentage PhytOC content on a dry weight basis 
is not determined by phytolith yield, but by the efficiency of 
carbon trapping during the phytolith’s deposition in plant 
[19].  

In other work, phytoliths could not be decomposed by 
using conventional methods of measuring soil carbon such 
as dry combustion and wet oxidation [43,44]. The occluded 
carbon in phytoliths therefore could not be determined and 
thus this carbon fraction was not included as a part of the 
total soil organic carbon pool. Also, previous studies have 
determined PhytOC using electron probes [45]— it is not an 
appropriate method for measuring PhytOC because the re-
sults only represent a small area bombarded by an electron 
beam. This is a likely reason why some data shows PhytOC 
can vary by up to 30% for some plants. In this study Phy-
tOC was determined by elemental analyzer which com-
busted samples at 1000°C. Phytoliths then decomposed and 
released the occluded carbon.   

3.2  Carbon sequestrated by PhytOC of millet  

Common millet and foxtail millet are important crops in 
arid and semi-arid regions of eastern Asia [46]. They were 
the earliest domesticated crops in the middle reaches of the 
Yellow River [47] and are still staple foods for these regions 
of Northern China. These two species of millets usually 
have an overlapping distribution because of similar physio-
logical characters [48]. The total planting area for foxtail 
millet was 838900 ha in 2007 [49]. Common millet has an 

annual production of 1.5 million tonnes and the planting 
area is 1×106 ha [50,51].   

Dry biomass is a key factor for estimating phytolith carbon 
sequestration rate. However, not many studies have ob-
tained the dry biomass of foxtail millet and common millet, 
and only grain production data are available. The ratio of 
grain to straw (grain/straw) has been widely applied to es-
timate the above-ground biomass of crops [52,53]. In this 
study, we used this ratio to estimate the straw weight and 
then obtain dry biomass weight. 

Based on the harvest data of crops from 300 agricultural 
experimental stations in China, the mean value of grain/ 
straw for foxtail millet which was found to be 0.62 [54]. We 
analyzed 442 species of common millets from China and  
found that the mean value of grain/straw was 0.58 [55]. The 
mean annual production of foxtail millet and common millet 
were 1.83 t ha−1 a−1 and 1.5 t ha−1 a−1 during 1999 to 2008, 
respectively [49,51]. These results show that the PhytOC 
accumulation rate of foxtail millet was 0.023 ± 0.015 t ha−1 a−1.  
In contrast to Foxtail millet, the PhytOC of common millet 
could sequester carbon at a rate of 0.020 ± 0.010 t ha−1 a−1. 
Compared with sugarcane, the phytolith carbon sequestra-
tion rate (0.12–0.36 t CO2 ha−1 a−1), of millets was rather 
low. This could be attributed to (1) millet phytoliths encap-
sulating less carbon than sugarcane and (2) millets yielding 
less dry biomass than sugarcane. 

Recently, soil phytoliths from a typical stratigraphy of 
volcanic ash and paleosols at the Numundo sites in Papua 
New Guinea were examined [16]. Here it was found that the 
proportion of PhytOC to total carbon increased dramatically 
from less than 10% in the youngest layers to 82% in the 
older layers (Figure 2), which means that the accumulation 
of PhytOC in soil is a long-term sequestration. Assuming 
the highest PhytOC to dry biomass ratio (0.214%) and using 
the annual production of foxtail millet during 1949 to 2008 
(http://www.sannong.gov.cn), we can estimate the highest 
PhytOC sequestration in the last 60 years (Figure 3). The 
results showed that 7×106 t CO2 are likely to have been se-
questered and this would be sufficient to offset CO2 emis-
sion released by the combustion of 2.69×106 t standard coal. 
The PhytOC sequestration of foxtail millet generally de-
clined during 1949 to 2008 in conjunction with changes in 
its planting area. However, other PhytOC crops such as 
wheat can capture more CO2 from the atmosphere and se-
curely sequester it for a long time too. 

Dry farming occurs on 48% of the 130 × 106 ha of arable 
land in China [56,57]. If all dry farming crops have a similar 
PhytOC accumulation rate as millets, this would lead to 2.37 

× 106 t CO2 being sequestered per year. Although phytoliths 
can occlude some organic carbon [58], the significant contri-
bution of PhytOC to the carbon cycle has been ignored during 
the last half-century. Fully understanding the mechanisms of 
how Phytoliths occlude carbon and the PhytOC content in 
different plants would enable us to accurately estimate global 
phytolith accumulation rate. 
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Figure 2  Comparison of soil PhytOC to soil organic carbon in Numundo, 
Papua New Guinea [16]. 

 

Figure 3  PhytOC accumulation rate of foxtail millet during 1949 to 2008. 

4  Conclusions 

Previous studies have argued that crops contribute less to 
carbon sink because they readily decomposed and quickly 
release CO2 back to the atmosphere. However, our study 
shows crops could sequester a substantial amount of carbon 
through the PhytOC fraction. The PhytOC carbon sequestra-
tion rate in Chinese common millet and foxtail millet were 
approximately 0.020 ± 0.010 and 0.023 ± 0.015 t CO2 ha−1 a−1, 
respectively. Assuming a similar PhytOC accumulation rate 
as common millet for other crops, unirrigated Chinese farming 
systems could sequester 2.37 × 106 t CO2 per year. From 
1949 to 2008, about 7 × 106 t CO2 may have been seques-
tered by the PhytOC pool of foxtail millet. Agricultural ac-
tivities have a complicated interaction with the global car-
bon balance. However, current studies on terrestrial ecosys-
tem carbon sinks pay little attention to carbon sequestration 
by the PhytOC pool which has been poorly integrated into 
our current understanding of the carbon cycle. The potential 

of PhytOC sequestration provides a new approach for en-
hancing the soil organic carbon sink. More studies on the 
PhytOC of different crops are needed and this carbon frac-
tion should now be incorporated in future long-term global 
carbon sequestration estimates.  
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