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a b s t r a c t

The East Asian winter monsoon (EAWM) not only plays an important role within the Asian climate
system, but also carries cold air from the high northern latitudes across the Equator to the Southern
Hemisphere, acting as a link between the polar and tropical climate systems. However, past changes of
the EAWM have not been clearly established so far due to the lack of suitable proxy records. Here, we at
first establish an index of the EAWM by comparing the results of a sediment trap experiment and 100-
year sedimentary record from Huguang Maar Lake (HML) with modern records of the EAWM, Siberian
High (SH) and Arctic Oscillation (AO). Secondly, we present a continuous record of the strength of the
EAWM for the past 14,500 years based on sedimentary diatom assemblages in HML. The record is derived
from fluctuations in the relative abundance of two planktonic diatom species. The link with the EAWM
intensity is through high wind speeds inducing turbulent mixing, which stimulates the productivity of
the meroplanktonic species Aulacoseira granulata. The diatom record of the past 14,500 years shows that
the EAWM shifted from strong to weak from the early to late Holocene. This linked to both changes in
winter temperature at high-latitudes and in El Niño conditions in the tropics. Our record shows that the
EAWM and East Asian summer monsoon (EASM) as recorded in stalagmites, were in-phase instead of
anti-correlated on orbital time scales during the Holocene. On a millennial time scales, the EAWM was
anti-phase with the EASM during the Last GlacialeHolocene transition. However, during the early
emiddle Holocene the relationship between the EAWM and EASM shows spatial variations. In northern
China, the records show significant anti-phase, but in southern China the anti-phase was not observed.
During the late Holocene, we did not find any clear relationship between the EAWM and EASM. We also
explored the link between the EAWM and the Australian summer monsoon (ASM). Anti-phase of the
ASM with summer insolation in the Southern Hemisphere is an enigmatic exception that cannot be
explained by the classic theory of insolation. During early Holocene the EAWM was in-phase with the
Australian summer monsoon (ASM), which provides the first direct evidence to support the hypothesis
that the intensity of the EAWM affected, at least in part, the strength of the ASM.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The East Asian winter monsoon (EAWM) is one of the most
active components in the global climate system. It generally refers
to the atmospheric flow over Asia associated with movement of
cold air coming from the Siberian High (SH) (Fig. 1) (Chen et al.,
: þ86 10 62032495.
ng).

All rights reserved.
1991; Ding, 1994; Huang et al., 2003, 2007; Chan and Li, 2004;
Chang et al., 2006). The SH, also called Siberian anticyclone, is
a semi-permanent system of high atmospheric pressure centered in
northeastern Siberia during the colder half of the year, when the air
temperature near the center of the high-pressure cell is often lower
than �40 �C. The SH affects the weather patterns in the higher
latitudes of the Northern Hemisphere, it is responsible both for
severe cold and dry conditions in winter across Siberia and most of
China (Oliver, 2005). The variability of the EAWM depends largely
on the behavior of the SH (Gong and Ho, 2002) and Arctic
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Fig. 1. The characteristics of surface winds of January (based on the NCEP/NCAR
reanalysis data) (Kalnay et al., 1996). To best illustrate the path of surface winds we
chose data from 1960 to 1985 AD, as this interval corresponds with strong winter
monsoon. HML means the location of Huguang Maar Lake.
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Oscillation (AO) (Gong et al., 2001). AO was introduced as an
annular mode of atmospheric circulation by Thompson and
Wallace (1998). Fluctuations in the AO create a seesaw pattern in
which atmospheric pressure and mass in northern polar and mid-
latitudes alternate between positive and negative phase (Wallace,
2000). When the AO is in a negative phase and the SH is strong,
the temperature is cold at high northern latitudes, resulting in
a strong EAWM (D’Arrigo et al., 2005). In addition, the EAWM have
been linked to the El Niño/Southern Oscillation (ENSO) (Li, 1990; Li
and Mu, 2000; Wang et al., 2000; Xu and Chan, 2001; Wang et al.,
2008a). A weak EAWM usually occurs during an El Niño year, but
the reverse occurs during a La Niña year (Li, 1989).

When the EAWM shifts southward, it not only covers northern
China and Japan (Chen et al., 2005; Wang et al., 2009), but its
southern branch also forms northeasterlies which penetrate
through the South China Sea and across the tropics into the
Southern Hemisphere (Fig.1) (Suppiah andWu,1998; Gong and Ho,
2002; Jhun and Lee, 2004; Miller et al., 2005). The EAWM therefore,
not only influences the East Asian summer monsoon (EASM), but
also affects convection over the maritime continent and the
Australian summer monsoon (ASM) (Chen et al., 1991; Suppiah and
Wu, 1998). It is necessary therefore for us to improve our knowl-
edge of the EAWM in order to understand climate dynamics in this
vast region.

So far, most of our knowledge on past changes of the EAWM
comes from loess records from the Chinese Loess Plateau. The grain
size of loess have been used as an indicator to reconstruct the
changes of the EAWM on orbital and millennial time scales (An
et al., 1991a; Porter and An, 1995; Xiao et al., 1995; An and Porter,
1997; Liu and Ding, 1998; Liu et al., 1999; Ding et al., 2002; Lu
et al., 2004; Porter and Zhou, 2006). When the EAWM is strong,
it carries coarse dust to the Chinese Loess Plateau resulting in the
increase of the grain size in loess records (An et al., 1991a). On
orbital time scales, changes in the EAWM have been linked to
changes in ice volume in the Northern Hemisphere (Ding et al.,
1995; Liu and Ding, 1998; Porter, 2001), which is primarily
controlled by the Northern Hemisphere summer insolation at 65�N
(Hays et al., 1976; Imbrie et al., 1984; Ruddiman et al., 1989;
Shackleton et al., 1990). The view is that the Northern Hemisphere
ice sheets indirectly influenced the EAWM by exerting an impor-
tant control on the intensity of the SH. During glacial, the large ice
sheets resulted in cold surface conditions in Siberia and strong SH
that lead to strong EAWM. In contrast, during interglacial small ice
sheets resulted in weak SH and weak EAWM. During the Holocene,
the grain size of many Chinese loess records (Yang and Ding, 2008)
and the high-resolution record of titanium concentration from the
Huguang Maar Lake (HML) (Yancheva et al., 2007) indicate that the
EAWM strengthened through time from low intensity during the
warm early Holocene to high intensity during the cool late Holo-
cene. However, it has been shown that Northern Hemisphere ice
sheets in land were larger during the earlyemiddle Holocene than
during the late Holocene (Dyke and Prest, 1987; Kutzbach et al.,
1998). The winter insolation in Northern Hemisphere is lower
during early Holocene than during late Holocene (Berger and
Loutre, 1991). Such change in the size of ice sheets and the inso-
lation should have caused aweakening of the EAWM from the early
to late Holocene. This contradiction needs to be explored.

Recent studies indicated that the grain size of loess not only was
controlledby theEAWM,butwasalso influencedby theEASM,which
controls the advance or retreat of the boundaries between the areas
of desert and loess (Yang andDing, 2008). Therefore, it is still open to
debatewhether the grain size in loess records is a robust indexof the
EAWM strength. The reliability of the titanium record from the HML
as an indicator of the EAWM (Yancheva et al., 2007) has also been
questioned. This is because titanium may not be carried by winter
winds from the Chinese Loess Plateau, but may be derived from
erosion by rainfall running off the HML catchments or water level
changes (Zhou et al., 2007, 2009). Another index for reconstructing
changes in the EAWM has been derived from the westeeast/north-
esouth gradients in sea surface temperatures established for the
northern part of the South China Sea (Tian et al., 2010; Huang et al.,
2011). However, these marine sediment records compared to lake
records have a rather low temporal resolution over the Holocene.

There is therefore a clear need to develop a new, high-
resolution, independent proxy record of the EAWM. Wang et al.
(2008b) used high-resolution diatom assemblages as a proxy
indicator of the EAWM from HML in subtropical China during the
Lateglacialeearly Holocene transition. Here we expand on that
study, by reconstructing the EAWM from the late Last Glacial
(14.5 ka BP) through the complete Holocene sequence up to the
present using the same sediment core. We provide new, additional
evidence linking diatom assemblage change to winter monsoon
through extended sediment trap studies, and the comparison of
diatom assemblages with indices of the SH and AO over the last c.
110 years. We discuss the correlation between the EAWM and
EASM on orbital andmillennial time scales, and possible linkages to
the EAWM and Australian summer monsoon (ASM).

2. Geographical setting

HML (21�90N, 110�170E, Fig. 2) is located in Guangdong Province,
near the coast of South China Sea. HML is a crater lake, with
a diameter ofw1.7 km and amaximumdepth ofw20m. This lake is
influenced by both the Asian summer andwintermonsoons (Fig. 2).
During winter, the strong EAWM covers northern China and
bifurcates south with one branch flowing along the coast of East
Asia (Lau and Li, 1984; Ding, 1994; Chen et al., 2000, 2005; Wang
et al., 2009). Therefore, the EAWM winds blowing over HML
come from the northeast (Fig. 1). These are responsible for the
complete mixing of the HML water column. During summer, by
contrast, the lake strongly stratifies due to weak winds and high
temperatures (Wang et al., 2008b).
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Fig. 2. Location of the Huguang Maar Lake (HML) and other sites in China with records
of the monsoon for comparison: Qinghai Lake (Chen et al., 2005), Juyanze Lake (Chen
et al., 2003; Hartmann and Wünnmann, 2009), Daihai Lake (Li et al., 2004; Xiao et al.,
2004; Xiao et al. 2008), Sihailongwan Maar Lake (Schettler et al., 2006; Parplies et al.,
2008; Stebich et al., 2009), Dongshiya Cave (Cai et al., 2008), Hulu Cave (Wang et al.,
2001) and Dongge Cave (Dykoski et al., 2005). The isobar line is mean sea-level
pressure (hPa) (after Zhang and Lin, 1992).
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The strong contrasting seasonal change in the lake water mixing
regime makes HML an ideal setting for the reconstruction in the
strength of the EAWMdue to: (i) the site is located in the path of the
EAWMbefore it crosses the Equator and influences the Intertropical
Convergence Zone (ITCZ) which in turn influences the EASM; (ii) it
is far from Siberia, so it is suitable for testing if changes in the
EAWM at low latitudes are in-phase with changes in the SH and in
Northern Hemispheric climate over the vast Chinese mainland; (iii)
this lake is a highly sensitive recorder of past climate in the tropical
zone, because changes in its physical properties, such as lake
turnover and stratification, are influenced by seasonal monsoon
variability (Wang et al., 2008b).

3. Materials and methods

In 1997, seven sediment cores (HUG-A to HUG-G) from three
different sites in HML were drilled with a high precision piston
coring system (Mingram et al., 2004). The Core HUG-B used for this
study has a length of 24.28 m and was recovered from a water
depth of 13.4 m (Mingram et al., 2004). The agemodel is based on 9
AMS (accelerator mass spectrometry) 14C dates, 5 of leaves and 4 of
bulk sediment. Details of the age model are given in Yancheva et al.
(2007), and all the ages given here are calibrated ages. The piston
core we study here covers the last 14,500 years.

Two approaches were used to demonstrate how seasonal
changes in diatom assemblage are associated with the East Asian
winter monsoon. First, monthly sediment traps samples were
collected from the lake between August 2007 and March 2009.
Cylindrical sediment traps were built according to the recom-
mendations of Blomqvist and Hakanson (1981). The traps were
deployed for one month between the 9th of each month at about
16 m water depth in the center of the lake. The solid material
together with water in the cups of trap were transported to the
laboratory for diatom analysis. The lake water temperature profile
was monitored using thermistors (Vemco) at 2 h interval from
November 2007 to May 2008. The changes in diatom composition
were compared with meteorological data spanning the period
between August 2007 and March 2009 from Zhanjiang City close to
HML.

Second, a short gravity core was retrieved in August 2007 from
the deepest part of the lake using a UWITEC gravity corer (30-cm
long) and sectioned into 0.5e1 cm intervals. The activities of
137Cs, 210Pb, and 226Ra were measured by gamma spectrometry
using a low-background well-type germanium detector (EGPC
100P-15R) at the Institute of Geology and Geophysics, Chinese
Academy of Sciences, Beijing. The chronology derived from the
210Pb CRSmodel matches with the peak of 137Cs and shows that this
core spans the last ca 110 years (Fig. 3). Diatom assemblages were
analyzed and our diatom-based EAWM index was validated by
comparisonwithmeteorological records of the EAWM index (Wang
et al., 2009) and SH index (D’Arrigo et al., 2005; Panagiotopoulos
et al., 2005).

Diatom slides were prepared using conventional method.
Approximately 0.05 g of dry sediment from each sample was
heated with H2O2 followed by HCl to remove organic matters and
carbonates, respectively (Battarbee et al., 2001; Li et al., 2009).
Between 300 and 600 diatom valves were counted from each
sample (with the exception of the samples taken at 64,134, 844 and
896 cm core depth that had low-diatom concentration and for
which only about 200 valves were counted). Valves were identified
to species level with the assistance of floras including Krammer and
Lange-Bertalot (1986e1991). Diatom data were expressed as
percent relative abundance of the total number of valves counted in
each sediment sample. Wang et al. (2008b) used the ratio of two
species as an indicator of the EAWM for the period
17,500e6000 cal. yrs BP: Cyclotella stelligera to Aulacoseira gran-
ulata (S/G). In this study, for convenience, we use the inverse AG/CS
ratio (A. granulata/C. stelligera), as a positive index for the strength
of the EAWM at the HML. Diatom concentrations (valves per gram)
for each level were estimated by the addition of divinyl benzene
microspheres to cleaned suspensions (Battarbee and Kneen, 1982).

4. Results and discussion

4.1. Proxy records of the East Asian winter monsoon

The strong relationship between diatom assemblages at the
HML and winter monsoon winds (WMW) was previously investi-
gated by Wang et al. (2008b). In this study we further explore the
possibility of using diatom assemblages as a proxy for the EAWM.
Here we show detailed seasonal change using monthly diatom,
water chemistry and water stratification data, and compare the
changes in diatom assemblage data over the past 100 years with the
modern EAWM index (Wang et al., 2009) and SH index (D’Arrigo
et al., 2005; Panagiotopoulos et al., 2005).

4.1.1. Seasonal changes in diatom assemblages, nutrient
concentrations and water stratification

Patterns in dominant diatom species from the monthly sedi-
ment trap samples from the HML show distinct seasonal changes
(Fig. 4a and b). Previous studies on diatom ecology have shown that
Cyclotella taxa are euplanktonic species, which most commonly
occur when lakes are thermally stratified during warm periods
with weak wind (Battarbee et al., 2002; Sorvari et al., 2002;
Rühland et al., 2003). Cyclotella species are also commonly
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observed in higher abundances in lakes with low nutrients (i.e.
oligotrophic) (Rühland et al., 2003). During summer, high
temperatures and weak winds (Fig. 4c) promote thermal stratifi-
cation of the lake water column (Fig. 5), when nutrients (N and Si)
%
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are low (Fig. 4d and e). These conditions favor the development of
euplanktonic and oligotrophic Cyclotella species in HML (Fig. 4b).

In contrast, many Aulacoseira species are meroplanktonic
species. Meroplanktonic organisms enter the plankton when mix-
ing conditions are such that they can be suspended and maintained
in the water column (Kilham, 1990). Aulacoseira species, such as
A. granulata, also appear to have rather high nutrient requirements
(Kilham and Kilham, 1975). During periods of strong wind, the lake
thermal stratification breaks down, causing nutrient-rich bottom
water to mix with surface water and therefore offering conditions
for meroplanktonic diatoms to thrive in abundance. Therefore, the
abundance of Aulacoseira species, such as A. granulata, is an indirect
paleoenvironmental indicator of the persistence of strong, seasonal
wind stress and resultant turbulent water column mixing and
nutrient upwelling conditions (Pilskaln and Johnson, 1991). During
winter in the HML region, the EAWM regime is dominant with high
wind speeds inducing turbulent mixing which result in an
isothermal water column (Fig. 5) (Wang et al., 2008b). These
conditions lead to nutrient-rich lake water favoring meroplank-
tonic and eutrophic diatoms, such as A. granulata (Fig. 4a).

Thermistor data for 2008e2009 recorded the rapid develop-
ment of thermal stratification in HML from the middle of February
2008 (Fig. 5). The onset of thermal stratification corresponded to
a decline in the abundance of A. granulata from the beginning of
spring, although winds were still strong until May that year
(Fig. 4c). These data show how A. granulata which has strongly
silicified cells is too heavy to remain in suspension in the photic
zone as stratification develops. Unless winter monsoon lasts into
the spring season and is strong enough to prevent the establish-
ment of thermal stratification, a heavily-silicified diatom such as
A. granulata will not be able to remain in suspension and will sink
out from the water column of HML. The dependence of this
species on mixing conditions has been reported by Kilham (1990).
Stability of thermal stratification in lakes is greatly affected by
wind speed. In particular, Langmuir circulations are elongated,
wind-induced convection cells that form at the surface of lakes
and of the sea (Langmuir, 1938). Importantly, Langmuir circulation
develops only when wind speed exceeds a threshold of 3 m/s
(Scott et al., 1969; Assaf et al., 1971; Reynolds, 2006). It should be
noted that the relationship between the relative abundance of
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A. granulata and wind speed is not linear and cannot be expressed
quantitatively.

This seasonal alternation between stratification and isothermy
is reflected in changes in diatom assemblages in sediment traps
from HML (Fig. 4). An increase in thermal stability will favor the
small, planktonic C. stelligera that has low sinking rates and that
prefers low nutrient environments, resulting in high relative
abundance of this species in sediment traps during summer
months. A well mixed water columnwill favor the heavily-silicified
A. granulata that requires turbulence, higher nutrient levels and
tolerates lower light conditions, resulting in high relative
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abundance of this species in sediment traps during windy winter
months in the HML.

4.1.2. Sedimentary diatom assemblages over the past 100 years and
link to the EAWM, SH and AO indices

The linkages between the EAWM and the SH and AO have been
established from the meteorological records (Gong et al., 2001; Wu
and Wang, 2002; Jhun and Lee, 2004; Chen et al., 2005; Chang et al.,
2006; Kang et al., 2006). Instrumental measurements show that the
EAWMhas significantlyweakened after the 1980s (Chang et al., 2006;
Kang et al., 2006;Wanget al., 2009;Wang and Chen, 2010).Wang and
Chen (2010)elaborateson themeaningsof18existingEAWMstrength
indices and classifies them into four categories: low-level wind
indices, upper zonal wind shear indices, eastewest pressure contrast
indices, and East Asian trough indices. In this paper, we compare our
datawithEastAsian trough indices,whichuse the strengthof the500-
hPa East Asian trough as indicative of the EAWM. Winter monsoon
velocityatXisha in theSouthChinaSea (16�500N,112�200E) alsoshows
asimilarweakeningtrendafter the1980s (Liuet al., 2008). This change
in the late 1980s (Fig. 6d) is concomitant with a shift to a weaker SH
(Fig. 6e and f) as shown by D’Arrigo et al. (2005) and Panagiotopoulos
et al. (2005), who made use of wintertime [Decem-
bereJanuaryeFebruary (DJF)] means of both historical gridded anal-
yses of sea-level pressure (SLP) and individual station observations of
SLP and surface pressure to define their index. Following the 1980s,
winters innorthernEuropebecamewarmdue to a shift in theAO from
a negative to a positive phase (Fig. 6g) (Thompson andWallace,1998).
Warmer European winters resulted in a weaker SH, and through
reduced snow cover extent, caused a decline in the strength of the
EAWM(Barnett et al.,1988; Clark et al.,1999;Clark andSerreze, 2000).

The diatom sedimentary record over the last 100 years from the
HML shows two abrupt shifts. In the late 1980s, a marked decrease
in A. granulata and a change in the AG/CS ratio (Fig. 6b and c)
matched the decline in the EAWM strength at about 1986 AD
(Chang et al., 2006; Kang et al., 2006; Wang et al., 2009) (Fig. 6d),
the decrease in the strength of the SH (Fig. 6e and f) and the shift in
AO from a negative to a positive phase (Fig. 6g). The abrupt increase
in A. granulata and AG/CS (Fig. 6b and c) at about 1920 AD also
 index
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SH index

d e f g
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elligera and A. granulata; c. the ratio of AG/CS (AG: A. granulata, CS: C. stelligera); d. the
giotopoulos et al., 2005); g. Arctic Oscillation index (Thompson and Wallace, 1998); the
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matches with changes in the SH and AO indices. These data indicate
that the diatom assemblages not only record the changes in the
EAWM seasonally (Fig. 4), but also on a decadal time scales.

Thus, the results from the diatom analysis of trap and short core
samples demonstrate that the diatom A. granulata abundance and
the ratio of AG/CS can be used as an indicator of the EAWM, with
high/low values of the ratio indicating strong/weak EAWM (Fig. 6).

4.2. Inference of the EAWM intensity from the diatom record for the
past 14.5 ka years

In our 14.5-ka-long record, A. granulata and C. stelligera are the
main diatom species, although benthic, littoral, diatoms are also
periodically important as a group (Fig. 7). It must be noted that
abundances of benthic follow that of A. granulata. This suggests that
their presence in middle of lake at the coring point is also driven by
strong mixing. The will not be discussed further in this paper.
Between 13 and 5 ka, the relative abundance of A. granulata and the
ratio of AG/CS showed high values indicating strong EAWM during
this period (Fig. 7). Relative abundance values of A. granulata and
the AG/CS ratio exhibit three peaks during this period. However,
after w5 ka years, the relative abundances of A. granulata and the
AG/CS ratio decreased (Fig. 7) and abundances of C. stelligera
increased (Fig. 7), indicating a dramatic reduction in the EAWM.
During the late Holocene, two small peaks of AG/CS occur at c. 3000
and after 1000 cal. yrs BP, indicating episodes with slightly
enhanced EAWM.

4.3. Linkage between the EAWM and winter climate changes at
high-latitudes and in tropical regions

4.3.1. Links to high-latitudes climate changes
The HML diatom record shows that the EAWM shifted from

strong to weak from the early to late Holocene. The change is
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consistent with winter (December) insolation increasing from the
early Holocene to late Holocene (Berger and Loutre, 1991) (Fig. 8d)
and with reconstructed Europeanwinter temperatures (Davis et al.,
2003). High-resolution records from the Holzmaar and Meerfelder
maar lakes in Germany also show that the winter seasonwas colder
in the earlyemiddle Holocene than in the late Holocene (Litt et al.,
2009) (Fig. 8b and c). Cold winters in the early Holocene in the
Northern Hemisphere would have promoted strong SH resulting in
strong EAWM as recorded by diatom assemblages from the HML,
which is characterized by high values of A. granulata (Fig. 7) and the
ratio AG/CS (Fig. 8a). In contrast, warm winters during the late
Holocene in the Northern Hemisphere would have caused weak SH
resulting in weak EAWM as indicated by low values of the
percentage of A. granulata and the ratios of AG/CS from the HML.

Onmillennial time scales and over the course of the Holocene, we
recognize four events with strong EAWM that occurred during the
intervals 10,000e8500, 7000e5500, 3100e2500, 1000e500 cal. BP
(Fig. 8a). The changes in strength of the EAWM were roughly consis-
tent with changes in the intensity of atmospheric circulation of SH as
indicated by Kþ concentration from the GISP2 ice-core (Mayewski
et al., 1997; Meeker and Mayewski, 2002) (Fig. 8f). High Kþ deposi-
tion are associatedwith spring strengthening of the SH, the coldest air
mass in the Northern Hemisphere, and deepening of the low over
South Asia (Meeker and Mayewski, 2002). The EAWM events during
theperiods10e8.5kaand7e5kaarealsoconsistentwith thedecrease
in Europeanwinter temperatures (Litt et al., 2009) (Fig. 8b and c).

4.3.2. Links to climate changes in tropical regions
Besides high-latitudes changes impacting on the EAWM, trop-

ical climate changes are also important (Li, 1989; Wang et al., 2000;
Wang et al., 2008a). Meteorological studies showed that a weak
EAWM usually occurs during the developing phase to the mature
phase of an El Niño year, and that the reverse occurs during a La
Niña year (Li, 1989). The relationship between El Niño-Southern
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Oscillation (ENSO) and the Asian winter monsoon is bridged by an
anomalous lower-tropospheric anticyclone located in the western
North Pacific (Wang et al., 2000).

TheENSOcyclehasbeena featureof theEarth’s climate forat least
the past 130,000 yrs (Tudhope et al., 2001), but there is a systematic
difference between the earlyemiddle Holocene and the last 5000 yr,
as indicated in various Holocene ENSO records (Rodbell et al., 1999;
Moy et al., 2002; Conroy et al., 2008). According to these records, at
5 ka therewas an increase in the frequencyof El Niño events (Rodbell
et al.,1999; Tudhope et al., 2001;Moyet al., 2002) (Fig. 8e).Moyet al.
(2002) suggested that the shift perhapswas due to changes in boreal
summer insolation, which is consistent with a modeling study
(Clement et al., 2000). During El Niño, anomalous Philippine Sea
anticyclone is induced by both the in situ ocean surface cooling and
the subsidence forced remotely by the central Pacific warming. The
anomalous anticyclone is associated with strong southerly winds
penetrating along the east Asian coasts and significantly weakening
the EAWM (Wang et al., 2000). Therefore, during the late Holocene
more frequent and stronger El Niño events may be an important
factor, leading to the shift in the strength of theEAWMfromstrong to
weak at around 5 ka years as indicated by the ratio of AG/CS (Fig. 8a).

Onmillennial time scales our EAWM record as the ratio of AG/CS
indicated only two events with intense EAWM during the late
Holocene (Fig. 8a) whereas the record of El Niño events shows
a series of large fluctuations during the late Holocene (Fig. 8e),
indicating an inconsistent relationship between the EAWM and
ENSO. This variability of the high-latitudes (SH)-tropical (ENSO)
teleconnection had also been found when comparing SH series
with ENSO over the past thousands years (D’Arrigo et al., 2005). It is
likely that other factors influence the relationship between the
ENSO and the EAWM during the late Holocene, such as the Pacific
Decadal Oscillation (PDO) (Wang et al., 2008a). Meteorological
observations indicate that when the PDO is in its high phase, there
is no robust relationship between ENSO and EAWM on an inter-
annual time scale, and when the PDO is in its low phase, ENSO
exerts a strong influence on the EAWM (Wang et al., 2008a).

In summary, while the EAWM as recorded by diatoms from the
HML is controlled by high latitude climate change, it is also affected
by tropical climate changes (El Niño). The significant shift in winter
temperatures from cold to warm (Litt et al., 2009) (Fig. 8b and c)
togetherwith the systemic changes in the ENSO cycle at around 5 ka
are most likely the two main reasons for the abrupt shift toward
weak EAWM conditions observed at about 5 ka BP from the HML.

4.4. Correlation between the EAWM and EASM

4.4.1. Orbital time scales
On orbital time scales, loess records indicate that the EAWM is

negatively correlated with the EASM (Ding et al., 1995; Liu and
Ding, 1998; Porter, 2001). In details, the grain size of loess have
been used as an index of the EAWM (An et al., 1991a; Liu and Ding,
1998; Liu et al., 1999) and magnetic susceptibility of loess as an
index of the EASM (Kukla and An, 1989; An et al., 1991b). The EASM
record in the Chinese loess-soil sequences show glacial and inter-
glacial cycles (Ding et al., 1995; Liu and Ding, 1998; Porter, 2001; Lu
et al., 2004; Hao and Guo, 2005) because the EAWM has an
important influence on the EASM (Ding et al., 1995; Liu and Ding,
1998; Porter, 2001).

The abundance of A. granulata and the ratio of AG/CS show that
the EAWM decreased from the earlyemiddle Holocene to late
Holocene in the HML (Fig. 7), when the EASM also decreased as
indicated by pollen data from HML (Wang et al., 2007a). Various
records of the EASM also show a similar trend. For example, in
southern China, the oxygen isotope records from stalagmites
suggest a decrease in strength of the EASM (Fig. 9d) (Dykoski et al.,
2005; Wang et al., 2005). It is however open to debate whether the
stalagmite oxygen isotope records are a reliable proxy of summer
monsoon (see Tan (2009) and Clemens et al. (2010) for in depth
discussion on this issue). In northern China, the pollen data from
Daihai Lake (Li et al., 2004; Xiao et al., 2004) (Fig. 9e) and Bayan-
chagan Lake (Jiang et al., 2006, 2010) indicated a decrease of the
EASM for the same interval. At the northern margin of the EASM an
obvious decrease of the EASM intensity was suggested for the late
Holocene on the basis of aeolian records from eastern Inner Mon-
golia (Yang et al., 2008) and the past shoreline and palaeo-soils
records from desert on the Alashan Plateau (Yang and Williams,
2003; Yang and Scuderi, 2010; Yang et al., 2011). In northwestern
China, the pollen data from Qinghai lake also showed that the
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strength of summer monsoon decreased from the earlyemiddle to
the late Holocene (Shen et al., 2005). All these data suggest that the
EAWM as recorded in the HML region and the EASM as recorded in
stalagmites, lakes and desert were controlled, at least during the
Holocene, by relatively independent systems (from high latitudes
and low latitudes, respectively). Through the Holocene, the retreat
of the Northern Hemisphere ice sheet, together with the increase in
winter insolation, likely played a substantial role in controlling the
EAWM, resulting in a weak EAWM during the late Holocene
(Fig. 8c). However, EASM alsoweakened during the same interval of
time as the ITCZ controlled by summer insolation migrated
southwards (Fig. 9d) (Dykoski et al., 2005; Fleitmann et al., 2007;
Yancheva et al., 2007; Wang et al., 2008c). Our data, when
compared with the Chinese stalagmite, lake and desert records,
show an in-phase relationship between the EAWM and EASM over
the Holocene on orbital time scale (Fig. 9) rather than an anti-phase
relationship as suggested by the loess records and HLM Titanium
profile (Yancheva et al., 2007).

4.4.2. Millennial time scales
On millennial time scales during the last glacial period, a nega-

tive relationship between the EAWM and the EASM is revealed by
comparing the EASM and EAWM records from China (Porter and
An, 1995; Xiao et al., 1995; Sirocko et al., 1996; An and Porter,
1997; Thompson et al., 1997; Guo et al., 1998; Chen et al., 1999;
Oppo and Sun, 2005; Porter and Zhou, 2006; Lu et al., 2007) with
the abrupt changes recorded in the North Atlantic (Bond and Lotti,
1995) and ice sheet (The Greenland Summit Ice Cores [CD-ROM],
1997). High-resolution EASM records with accurate chronology,
e.g. from stalagmites during the last glacial (Wang et al., 2001),
show a close relationship with the oxygen isotopes record from the
Greenland ice cores (The Greenland Summit Ice Cores [CD-ROM],
1997), indicating that changes at high latitudes played a very
important role in affecting on the EASM during cold periods, such
as the Younger Dryas and Heinrich events.

When we compare our record of the EAWM with that of the
EASM reconstructed from stalagmite (Dykoski et al., 2005) (Fig. 9d)
and pollen records (Xiao et al., 2004) (Fig. 9e), it suggests that the
relationship between themwas variable spatially and through time.
We can establish three different types of relationship: 1) anti-
phasing in both northern and southern China during the Last Gla-
cialeHolocene transition, 2) anti-phasing in northern China, but in-
phase in southern China during the earlyemiddle Holocene, 3) no
clear relationship between them during the late Holocene.

The EAWM as recorded at the HML and the EASM as recorded
from pollen data from Daihai Lake in northern China (Xiao et al.,
2004) and stalagmite from Dongge cave in southern China
(Dykoski et al., 2005) (Fig. 9) during the Last GlacialeHolocene
transition between 14.5 and 10 ka are anti-correlated in both
northern and southern China. In the interval between c. 13 and
11.7 ka, strong EAWMas recorded by high AG/CS ratio in the HML, is
simultaneous with weak EASM, as recorded in Chinese stalagmites
from southern (Wang et al., 2001; Dykoski et al., 2005) (Fig. 9d) and
northern China (Cai et al., 2008) and high-resolution records from
Sihailongwan maar Lake (Parplies et al., 2008; Stebich et al., 2009)
and in loess-paleosol sequences from the Chinese Loess Plateau
(Zhou et al., 1999, 2001). This interval corresponds to the Younger
Dryas cold period.

During the earlyemiddle Holocene between 10 and 5 ka years,
the EAWM as recorded at HML is in-phase with the EASM in
southern China, but anti-phase with the EASM in northern China.
For example, for the 7e5 ka strong EAWMevent are notmatched by
equivalent intervals of weak summer monsoon in southern China
as indicated by the stalagmite record of Dongge cave (Dykoski et al.,
2005; Wang et al., 2005) (Fig. 9d). By contrast, when we compare
the HML diatom record of the EAWM with records of the EASM
from northern China, we see that the 7e5 ka strong EAWM event is
well matched by an interval of weak summer monsoon as derived
from pollen data from Daihai Lake (Xiao et al., 2004) (Fig. 9e). In
other places in northern China, the EASM was also shown to have
been similarly weak during this period. The high-resolution record
from Sihailongwan maar lake in northeastern China showed that
summer monsoon rainfall reached a Holocene minima around
6.4 ka (Schettler et al., 2006). TOC data from Dali Lake (Xiao et al.,
2008) and multiproxy records from the Tengger desert and
Zhuyezhe Lake on the Alashan Plateau (Zhang et al., 2000; Chen
et al., 2003) and the sparsity of 14C dates for this time interval
(Guo et al., 2000) indicate a weak summer monsoon during this
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period. A major episode of dry climate conditions with generally
low but fluctuating runoff and deposition of aeolian sand lasted for
about 2100 yr between 7.5 and 5.4 ka in Juyanze Lake also indi-
cating weak summer monsoon during this period (Hartmann and
Wünnemann, 2009). However, in Badain Jaran desert, the highest
lake stands, which indicate the wettest period, bracket the interval
between 4 and 7.5 ka (Yang et al., 2010).

For the 10e8.5 ka strong EAWM event, although there was no
obvious signal in the tree pollen record of Xiao et al. (2004), which
shows an overall weak EASM between 11 and 8 ka cal. yrs BP
(Fig. 9e), another record from Daihai lake showed that the pollen
concentration decreased between 10 and 8.5 ka (Li et al., 2004)
while at Hulun Lake the percentages of Betulawere low (Wen et al.,
2010). The Sihailongwan Lake record also showed that aeolian
influx of silt-size debris was relatively high during an overall dry
period between 9.5 and 8 ka (Schettler et al., 2006). In the Badain
Jaran Desert, an end phase of aeolian sand sedimentationwas dated
to 8200 � 400 yrs BP by thermoluminescence (Yang and Williams,
2003) while in Hunshandake sandy land an aeolian sand layer was
dated to 9300 � 270 yrs BP (Yang et al., 2008) and also suggest dry
periods. Further north, extremely low runoff occurred between 8.9
and 8.1 ka in Juyanze Lake, indicating dry climate conditions
(Hartmann and Wünnemann, 2009). Although all these records of
dry events are not exactly synchrone with the EAWM events from
the HML, they exhibit for these two strong EAWM periods similar
millennium scale variability, especially when considering dating
uncertainties.

During the late Holocene, the EAWM as interpreted from our
diatom data did not show any clear relationship with the EASM
derived fromthestalagmite andpollen records (Fig. 9). LateHolocene
variability in the EASM has been reported from different records
(Xiao et al., 2004;Wang et al., 2005) which detail several significant,
abrupt changes, but only two weak EAWM events were recorded in
HML at about 3000 cal. yrs BP and after 1000 cal. yrs BP (Fig. 9a).

From the above discussion we hypothesize that the relationship
between the EAWM and EASM depends on the strength of the
EAWM. During the Younger Dryas the EAWM was probably strong
enough to impede the EASM front frommigrating northward to both
northern and southern China, resulting in a weak EASM over both
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regions consistently with data from southern China (Wang et al.,
2001; Dykoski et al., 2005), northern China (Cai et al., 2008), the
Chinese Loess Plateau (Zhou et al., 1999, 2001). During the ear-
lyemiddle Holocene, the strengthening of the EAWM during the
periods 10e8.5 ka and7e5.5kawasunlikely to be as strong asduring
the Younger Dryas, andwould not have displaced the EASM front out
of the Chinese mainland especially as the summer insolation was
high in the Northern Hemisphere resulting in a strong EASM. These
twoEAWMeventshowever,wereprobablystrongenough todisplace
the EASM front out of northern China, which resulted in less
precipitation in these regions during these two episodes. This
explains the difference we observe between southern and northern
China. During the late Holocene, apart from the last 1000 years, the
EAWMwas so weak that it could not affect the EASM and therefore,
there is no clear correlation between the EAWM from the HML and
the EASM from the stalagmite and pollen records in that interval.

In summary, the changes in the EAWMand EASM are responsive
to climate change at high (AO/NAO) and low latitudes (ITCZ/ENSO),
respectively. Our data indicate that the correlation between the
EAWM and the EASM is variable, with dependence on the strength
of the EAWM. The variability in the spatial correlation between the
EAWM and EASM indicate that the influence of the EAWM on the
EASM was more significant in northern China than in southern
China. This spatial difference in correlation between the EAWMand
EASM could explain why the loess-soil sequence recorded weak
processional cycle and significant glacialeinterglacial cycle of the
EASM on the Loess Plateau (Ding et al., 1995; Lu et al., 2004), while
by contrast, the stalagmites of southern China recorded significant
processional cycle and very weak glacialeinterglacial cycle of the
EASM (Wang et al., 2008c).

4.5. The correlation between the EAWM and the ASM

Many geological records of the ASM from Australia showed that
the ASMwas strong in the earlyemiddle Holocene and weak in the
late Holocene (Shulmeister, 1991; Shulmeister and Lees, 1995;
Wyrwoll and Miller, 2001; Hesse et al., 2004; Magee et al., 2004).
The changes in ASM during the Holocene cannot be explained by
changes in insolation over the Southern Hemisphere (Fig. 10d and
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e). An orbital time scale variation in Milankovitch insolation has
been widely accepted as a first-order forcing mechanism of
monsoon regimes (Kutsbach, 1981; Kutzbach and Street-Perrott,
1985). The variation in rainfall exhibits an inter-hemispheric anti-
phasing between southern Brazil and China, because the summer
insolation is anti-phased between the Northern and Southern
Hemispheres (Wang et al., 2007b). Several hypotheses for the
possible factors at play in influencing changes in the ASM over the
Holocene have been proposed, including changes in sea level and
temperature (Liu et al., 2003), ENSO (Shulmeister and Lees, 1995;
Haberle, 2005; Donders et al., 2007; Quigley et al., 2010), as well as
summer insolation in the Southern Hemisphere (Wyrwoll et al.,
2007).

The EAWM as one of the factors having an influence on the
activity of the ASM has been proposed before (Liu and Ding, 1998;
Suppiah andWu, 1998), because meteorological observations show
that the low-level northerly and northeasterly air currents can
occasionally flow across the Equator and merge with the ASM
(Chen et al., 1991). Recently, meteorological data have also indi-
cated that a positive correlation exists between northerly winter
winds in the South China Sea and the ASM on an inter-annual time
scale (Chase et al., 2003;Wang et al., 2003). The changes in the ASM
did not show a positive correlation with the weakening of the
EAWMafter the 1980s. A possible reason for this discrepancy is that
the observed increase in precipitation over Australia during the
past 20 years was caused by an increase in aerosols (Rotstayn et al.,
2007) and therefore was unrelated to changes in the EAWM.

General Circulation Model (GCM) simulations also suggested
that the strength of the ASM is determined by the Northern
Hemisphere winter insolation control on the intensity of the SH
(Miller et al., 2005) (Fig. 10b), rather than by summer insolation
over the Australian continent. However, until now no direct record
of the EAWM has been established in support to this hypothesis.
The HML diatom record shows that the EAWM shifted from strong
to weak from the early to late Holocene, indicating that the EAWM
was in-phase with the ASM. This result provides the first direct
evidence to support the view that the intensity of the EAWM most
likely plays an important role in controlling the strength of the ASM
(Suppiah andWu,1998; Magee et al., 2004; Miller et al., 2005). This
linkage needs to be further explored through the comparison of
high-resolution records of both the ASM and EAWM.

5. Conclusions

The diatom record from HML in South China shows that there
was amarked shift from strong toweak in the EAWM from the early
to late Holocene. Changes in the EAWM were closely linked with
high-latitudes climate change on orbital and on millennial time
scales during the Holocene. It was also influenced by changes in
ENSO. The relationship between the EAWM and EASM show spatial
and temporal variability, and is dependent on the strength of the
EAWM. Finally, the EAWMwas probably one of the most important
factors in influencing the changes in the ASM during the early
Holocene.
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