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The ChangbaishanMillenniumeruption (~AD940s) produced awidely distributed tephra layer aroundnortheast
Asia. This tephra layer serves as a marker bed in Greenland ice cores and in marine, lake, archeological and
tsunami sediments in Japan and the surrounding region. However, little attention has been paid to the
widespread sediments west of Changbaishan volcano. Here we present new stratigraphic, geochemical, varve
chronology, and 14C geochronological data from the varved sediments in Lake Sihailongwan, Longgang volcanic
field, Northeast China, extending thewesterlymargin of this eruption. The distinctive geochemical characteristic
of volcanic glass (ranging from trachyte to rhyolite), similar to those of proximal and distal tephra, confirmed the
occurrence of Changbaishan Millennium eruption ash in the lake, illustrating the westward dispersal fan of the
ash deposits. The position of the peak concentration of glass shards of this tephra was dated to 953 ± 37 AD
by varve chronology, and the radiocarbon samples immediately above this tephra gave a date of 940–1020 AD,
overlapping the most recent ages for this eruption. The occurrence of Changbaishan Millennium eruption ash
in this lake enables a direct and precise synchronization with other high-resolution archives in Northeast Asia,
such as maar lakes and peat and marine sediments, thus providing an isochronous marker for a range of
sedimentary contexts.

© 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

Volcanic ash (tephra), produced by explosive eruptions, is deposited
rapidly; hence, it can serve as a distinctive andwidespread synchronous
marker horizon, correlating terrestrial, marine and ice core records
(Haflidason et al., 2000; Davies et al., 2005; Lowe, 2011; Alloway et al.,
2013). In regions distal to volcanic sources, cryptotephra layers or
glass shards can be used as an important constraint in the chronology
of sedimentary sequences; however, such layers are often overlooked,
especially in lake sediments where a high proportion of inorganic
components have considerably diluted the concentration of glass
shards. Only through careful detection and with a targeted technique
can some of the cryptotephra layers be detected (Turney, 1998;
Blockley et al., 2005; Ranner et al., 2005). Though the most explosive
eruptions can disperse ash over thousands of kilometers (e.g. Lane
et al., 2013a; Sun et al., 2014a), the distribution of tephra within
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sediments is frequently discontinuous due to atmospheric dynamics
and catchment processes (Lane et al., 2012; Lawson et al., 2012).
Additionally, tephra distribution and glass compositions may be
heterogeneous as a result of multiple magmas, magma-mingling, or
syn-eruptive changes in dispersal patterns (spatial differentiation)
(e.g. Lowe et al., 2008; Shane et al., 2008; Lane et al., 2012).

The Changbaishan volcano, an intraplate stratovolcano located on
the border between China and North Korea, is known for itsMillennium
eruption about 1000 years ago. This eruption is considered to be one of
the most violent eruptions over the past 2000 years because of its vast
volume (a total volume of ~100 km3 loose tephra, and magma volume
(DRE ~25 km3)) and widely distributed volcanic products (Horn and
Schmincke, 2000; Sun et al., 2014a). The fall-out pumice was
predominantly deposited on the volcano's eastern slope and a tephra
layer up to ~16 cm was identified in the Sea of Japan (Machida and
Arai, 1983; Horn and Schmincke, 2000).

Distal tephra from the Changbaishan Millennium eruption was first
identified and described in Japan, where it is found as a visible tephra
layer, and named B–Tm tephra after the source volcano (Baitoushan
or Changbaishan) and the finding site (Tomakomai, Hokkaido)
(Machida and Arai, 1983). Since than, tephra layers correlating with
V. All rights reserved.
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B–Tm tephra have been identified and serve as an important marker
horizon across the Sea of Japan to Japan. The marker layer is applied in
studies such as vegetation evolution, volcanic activities, archeology,
and event stratigraphy (Fig. 1) (e.g. Furuta et al., 1986; Nakagawa
et al., 2002; Ikehara, 2003; Nanayama et al., 2003, 2007; Okuno et al.,
2011; Hughes et al., 2013; Tanigawa et al., 2014). In the Sihailongwan
sediments (Fig. 1), Guo et al. (2005) reported a tephra layer with a
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Fig. 1. A: Locations of the Changbaishan volcano (CBS) and the Longgang volcanic filed (LVF), d
the B–Tm tephrawere found. B: Locations ofmaar lakes and peat bogs around the LVF.Modified
map of Lake Sihailongwan. Solid black circle is the coring site. Abbreviation: JC is Jinchuan and
Nanlongwan, 4 is Lake Sanjiaolongwan, 5 is Lake Hanlongwan, 6 is Lake Dalongwan, 7 is Gush
rhyolitic glass composition, which they traced to the Changbaishan
Millennium eruption. However, its major element composition is
distinctly different from the proximal, distal and ultra-distal B–Tm
tephra, which all display bimodal glass compositions sourced from the
same eruption (Sun et al., 2014a,b). Meanwhile, other studies claimed
that ash from the Changbaishan eruptions could not have been
transported to the Longgang volcanic field (e.g. Cheng et al., 2008;
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Mao et al., 2009). Thus there have been no validated findings that con-
firm the existence of a macro-tephra or micro-tephra (cryptotephra)
layer in Northeast China (west of Changbaishan volcano), a region
that includes a number of sedimentary contexts such as maar lakes
and peat bogs (Fig. 1).

In this paper we report on the discovery of a discrete cryptotephra
layer sourced from the Changbaishan Millennium eruption in a
sediment sequence cored from Lake Sihailongwan, Longgang volcanic
field (LVF), Northeast China. We thus extend the known western foot-
print of the Changbaishan Millennium eruption ash (CMA). Chemical
characterization of the glass shows a distinctive composition extending
from trachyte to rhyolite that can be reliably compared with proximal
and eastern distal tephra from this eruption.We present a full chemical
characterization the CMA from proximal tephra and distal tephra and
test its chemical correlation to CMA found around northeastern Asia.
Based on the stratigraphic and geochemical records of glass shards,
varve chronology and 14C geochronology, we conclude that it is highly
likely that the tephra/cryptotephra horizon from the Changbaishan
Millennium eruption can be traced in a range of sedimentary contexts
throughout Northeast China; identifying this marker will significantly
improve the potential for robust correlation of palaeoenvironmental
records between the regions of Northeast China and Japan.

2. Study site

Lake Sihailongwan (42°17′N, 126°36′), ~125 km away from
Changbaishan volcano, is a maar lake located in the LVF, Northeast
China. A 10–119m tuff ring around the lake makes it an ideal candidate
for paleoclimatic and tephrostratigraphic studies (Chu et al., 2012). This
lake is fed primarily by groundwater inflow and rainfall during summer,
with no outlets for stream transportation (Liu et al., 2005). Sediments
comprising of annual laminated layers are well developed in this area
mainly owing to the distinct biannual depositions and very minor
impact of human activity. The varved sediments provide a reliable time-
scale for dust flux rates, vegetation evolution, paleoclimatic, and
paleohydrological studies over the last decade (e.g. Mingram et al.,
2004; Chu et al., 2005; Schettler et al., 2006a,b; Chu et al., 2009, 2012,
2013; Li et al., 2013; Zhu et al., 2013).

3. Methods and materials

3.1. Cryptotephra investigation

Drill core for cryptotephra investigation was taken from Lake
Sihailongwan at 2008. Contiguous 2 cm samples were taken from the
core and then freeze-dried and weighed so as to give an estimation of
the number of glass shards per 0.5 g of dry weight sediment (gdw). A
10% HCl solution was added to all the samples overnight to dissolve
carbonates and other inorganic materials. After acidizing, the treatment
of H2O2 was performed to disaggregate the sediments and remove
organic material (e.g. Brauer et al., 2007; Koren et al., 2008). All the
samples were sieved through 30–100 μm sieves and material of
diameter b30 μm was discarded. For each 2-cm segment where glass
shards were detected, further contiguous 1-cm samples were taken at
depths corresponding to the greatest glass shard concentration to
determine more precisely the position of the peak concentration of
shards and perform EPMA analysis on glass shards. The treatment of
1-cm samples followed the procedures performed on the 2-cm
segments above. The shard concentrations were counted under a
high-power optical microscope.

3.2. Geochemical analysis

After the depths of peak cryptotephra concentration were deter-
mined, samples treated with H2O2 were taken from these depths for
geochemical analysis. Glass shards were mounted, ground and polished
to expose the internal sections for electron microprobe analysis
(EMPA), and to diminish the effect of the peroxide treatment. A major
element analysis was carried out using a JEOL JXA 8100 electron
microprobe at the State Key Laboratory of Lithospheric Evolution,
Institute of Geology and Geophysics, Chinese Academy of Sciences.
Ten major elements (Na, Mg, Al, Si, K, Ca, Fe, Ti, Mn, Cl) were analyzed
with an accelerating voltage of 15 kV, a beam current of 6 nA, and a
beam diameter of 5–10 μm according to the size of the glass shards.
Peak counting times used were 20 s for all elements except for the Na
(10 s). In addition, determination of Na content was made at the start
of analysis to reduce the impact of its mobilization. Two secondary
standard glasses from the MPI-DING fused glass, ATHO-G (rhyolite)
and StHs6/80-G (andesite) (Jochum et al., 2006), were used to monitor
the precision and accuracy of the data.

3.3. Chronology

Varve chronology was carried out on this core. Sediment slabs
were cut off from the core, and then shock-frozen with nitrogen,
vacuum-dried, impregnated with epoxy resin and cut into thin
sections. Varves were identified and counted from thin sections
under a Leitz polarizing microscope. In this lake, varves appear as
rhythmic units of a diatom-rich layer (autumn), followed by a
light-colored siliciclastic layer (spring), and a subsequent mixed
layer (summer) (Chu et al., 2005). The error of the varve chronology
is less than 4%. Additionally, 14C dating was also performed on
terrestrial plant leaves extracted at 51 cm overlapping the depth of
the peak concentration of glass (Fig. 2). The leaves were washed
with dilute HCl, NaOH, and distilled water and then dated by the
accelerator mass spectrometry method of 14C radiocarbon measure-
ment at the Beta Analytic Radiocarbon Laboratory, Florida, USA.

4. Results

4.1. Position and morphology of the cryptotephra layer

A visible black scoria layer (T1 tephra horizon; Fig. 2) was found at
78–79 cm in this core, corresponding to an extensive time-parallel
marker horizon across the LVF such as Lake Xiaolongwan (e.g.
Mingram et al., 2004; Liu et al., 2009). This basaltic tephra layer came
from the local volcanic eruption of LVF and its composition is distinct
from recent eruptions of the Changbaishan volcano (Guo et al., 2005;
Liu et al., 2009). An age of AD 367–191 was assigned to this tephra
layer by varve-chronology (Chu et al., 2009), which servers as a time
point around LVF.

The initial 2-cm segment scans showed that the CMA presented at
51–52 cm in the Lake Sihailongwan core. Further 1-cm slides and
scans demonstrated that the cryptotephra layers were located at 52
and 53 cm where peak concentrations of light brown and colorless
glass shards were found, respectively (Fig. 2). A peak in the shard
concentrations of 2657 shards/0.5 gdw for colorless glass was detected
at 53 cm and 669 shards/0.5 gdw for light brown glass were found at
52 cm. Colorless glass shards take up the major component in this
tephra horizon and have vesicular morphology, while most of the light
brown glass are platy shards. No signs of corrosion or mechanical
wear due to secondary processes were observed in this horizon
(Fig. 3). In addition, there are no obvious microphenocryst/microlite
inclusions within the glass, which confirms the reliability of the
geochemical analysis (Hunt and Hill, 2001).

4.2. Geochemical characteristics

The major element compositions of the glass shards from this
horizon are shown in Table 1 and presented in Fig. 4. Only analyses
with acceptable analytical totals (N93%) and no distinct migration of
sodium (N3%) are presented here. All the data were normalized to an



Fig. 2. Simplified tephrostratigraphy and lithology of Lake Sihailongwan alongwith the numbers of glass shards. Glass shards are plotted as the number of shards per 0.5 g of dry sediment.
The age of terrestrial plant leaves at 51 cm is 930–1010 cal a BP.

55C. Sun et al. / Gondwana Research 28 (2015) 52–60
anhydrous basis to facilitate a reliable correlation of tephra layers
between various settings, especially those in lacustrine and marine
sediments where water might be absorbed into glass shards (Pearce
et al., 2014). According to the total alkali silica (TAS) (Le Maitre et al.,
1989) and harker diagrams of the major elements, the geochemical
composition of the volcanic glass in this tephra is heterogeneous,
ranging from trachytic to rhyolitic (based on anhydrous normalized
data) with a few analysis results plotting in-between. The SiO2 values
range between 66 and 77 wt.%, CaO values between 0.2 and 1.6 wt.%,
FeOt values between 3.6 and 5.0 wt.%, K2O values between 4.2 and
6.0 wt.% and TiO2 between 0.2 and 0.6 wt.% (Table 1).

Data from Lake Sihailongwan were compared with previous
analyses of distal and ultra-distal CMA glass shards and to a set of new
analyses of proximal CMA (gray pumice) from Changbaishan volcano
(sampling site: Wuhaojie on its western caldera rim) under the same
Fig. 3. Light microscope photographs of shards extracted from Lake Sihailongw
analytical protocol (Table S1). These new data show a geochemical
characteristic similar to that of the proximal and distal tephra (Fig. 4,
Tables 1 and S1). The major-element geochemistry results for the
glass shards separated from Lake Sihailongwan tend to fall within the
compositional range exhibited by the proximal tephra from
Changbaishan, the distal tephra from the Japan areas and ultra-distal
tephra from the Greenland ice cores (Fig. 4).

4.3. Chronology

The peak concentration of glass shards of this tephra layer was dated
to 953±37AD, in agreementwith the reported ages for theMillennium
eruption (Table 2); the stated uncertainty is the maximum counting
error estimated by re-counting the varves three times. The AMS 14C
age of the leaves at 51 cm was calibrated based on the Intcal 2013
an at 52–53 cm. All glass show a primary morphology with angular edges.

Image of Fig. 2
Image of Fig. 3


Table 1
WDS–EPMA results of glass shards for SHL 52 and SHL 53 from Lake Sihailongwan. Proximal data fromWuhaojiebei are available online. All data have been normalized to anhydrous basis
with original analytical totals. MPI-DING fused volcanic glass standards ATHO-G and StHs6/80-G was used as secondary standards.

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Analytical total

Tephra analysis
53 cm 76.42 0.22 10.20 3.96 0.15 0.00 0.20 3.79 4.76 0.39 97.49

75.78 0.24 10.18 3.81 0.09 0.00 0.27 4.31 5.00 0.41 97.20
76.09 0.26 10.29 3.87 0.09 0.02 0.24 3.90 4.93 0.42 96.31
75.87 0.24 10.62 3.95 0.11 0.04 0.25 4.40 4.21 0.41 95.84
75.14 0.18 10.72 4.02 0.07 0.01 0.30 4.79 4.50 0.35 96.18
72.92 0.29 12.10 3.96 0.07 0.03 0.52 4.76 5.13 0.29 96.88
72.86 0.27 12.30 4.07 0.09 0.00 0.60 4.50 5.11 0.27 96.28
71.96 0.25 11.86 4.71 0.14 0.08 0.83 4.59 5.37 0.25 96.52
73.21 0.25 12.22 4.25 0.12 0.05 0.59 4.30 4.79 0.27 93.60
72.17 0.26 12.53 4.31 0.11 0.08 0.72 4.33 5.34 0.21 94.78
70.31 0.32 13.63 4.48 0.02 0.04 0.89 4.77 5.39 0.19 96.39
70.93 0.27 13.48 4.09 0.10 0.05 0.82 4.69 5.44 0.19 95.20
68.46 0.35 14.88 4.65 0.11 0.08 1.25 4.68 5.43 0.14 98.36
71.25 0.40 14.13 4.29 0.11 0.05 0.88 3.54 5.18 0.24 94.22
68.43 0.32 15.20 4.47 0.09 0.13 1.16 4.70 5.42 0.10 98.02
69.04 0.33 15.13 3.87 0.07 0.09 1.10 4.89 5.40 0.11 97.04
69.32 0.28 15.19 4.68 0.15 0.07 1.40 3.23 5.59 0.12 96.45
68.76 0.54 15.37 4.53 0.16 0.21 0.99 3.66 5.64 0.17 96.72
67.56 0.36 15.19 4.67 0.13 0.16 1.11 5.29 5.44 0.12 97.73
68.20 0.41 14.93 4.21 0.12 0.10 1.28 5.32 5.39 0.06 96.72
67.34 0.44 15.16 4.85 0.19 0.14 1.23 5.03 5.52 0.12 97.69
65.98 0.50 15.89 4.82 0.15 0.23 1.39 5.15 5.81 0.09 99.31
68.29 0.41 14.86 4.70 0.13 0.13 1.01 4.91 5.43 0.17 95.82
66.47 0.52 16.00 4.65 0.15 0.29 1.32 4.68 5.85 0.10 98.44
67.07 0.34 15.35 4.94 0.16 0.11 1.15 5.29 5.49 0.12 97.38
66.29 0.49 16.02 4.50 0.12 0.22 1.37 5.19 5.72 0.09 98.38
66.57 0.47 15.86 4.77 0.12 0.24 1.35 4.84 5.72 0.09 97.91
68.44 0.32 14.90 4.64 0.11 0.11 0.96 4.69 5.75 0.09 95.22
67.03 0.49 15.41 4.43 0.12 0.20 1.28 5.46 5.49 0.13 96.98
68.03 0.37 14.87 4.33 0.13 0.08 1.24 5.17 5.71 0.11 95.45
66.94 0.43 15.27 4.71 0.10 0.20 1.32 5.47 5.49 0.10 96.98
66.55 0.45 15.73 4.78 0.15 0.22 1.30 5.08 5.64 0.13 97.44
66.29 0.59 16.09 4.58 0.13 0.25 1.35 5.04 5.60 0.07 97.81
66.57 0.50 15.75 4.65 0.07 0.19 1.33 5.33 5.55 0.08 96.73
67.15 0.52 15.31 4.73 0.11 0.12 1.27 5.34 5.37 0.08 95.68
66.53 0.45 15.79 4.61 0.15 0.20 1.60 5.02 5.61 0.03 96.54
66.43 0.56 15.34 4.69 0.09 0.17 1.56 5.64 5.46 0.10 96.24
65.84 0.47 15.84 4.67 0.10 0.29 1.43 5.45 5.83 0.10 97.07
66.24 0.48 15.89 4.73 0.12 0.17 1.42 5.27 5.61 0.09 96.30

52 cm 75.28 0.25 10.74 4.05 0.10 0.02 0.30 4.53 4.43 0.39 96.50
66.06 0.58 16.07 4.52 0.10 0.28 1.40 4.96 5.95 0.10 95.08
65.81 0.56 15.76 4.75 0.15 0.24 1.35 5.48 5.81 0.12 95.67
66.84 0.38 15.35 4.85 0.13 0.34 1.24 5.30 5.50 0.10 94.57
65.55 0.59 15.99 4.79 0.14 0.27 1.39 5.27 5.97 0.05 96.15
66.09 0.46 15.89 4.82 0.13 0.24 1.46 5.41 5.42 0.09 95.67
66.71 0.40 15.35 4.84 0.09 0.17 1.33 5.54 5.48 0.11 95.52
67.58 0.40 15.14 4.65 0.09 0.14 1.15 5.26 5.49 0.15 94.14
66.02 0.58 15.99 4.62 0.09 0.28 1.45 5.19 5.73 0.07 97.20
66.15 0.48 16.27 4.46 0.11 0.29 1.33 5.17 5.71 0.05 97.44
65.59 0.53 16.18 4.58 0.12 0.27 1.34 5.30 6.02 0.08 98.22
65.81 0.52 16.01 4.65 0.12 0.33 1.38 5.24 5.86 0.12 98.14
66.05 0.54 15.95 4.47 0.14 0.27 1.29 5.40 5.83 0.07 98.16
67.32 0.40 15.02 4.62 0.13 0.16 1.26 5.40 5.55 0.18 96.33
66.31 0.45 15.88 4.60 0.13 0.27 1.34 5.26 5.69 0.11 98.49
66.29 0.49 16.13 4.54 0.16 0.23 1.40 4.88 5.79 0.09 98.69
66.93 0.45 15.54 4.70 0.14 0.14 1.31 5.10 5.60 0.11 98.06
67.85 0.42 14.76 4.65 0.14 0.11 1.12 5.54 5.29 0.15 96.79
67.76 0.32 14.88 4.65 0.17 0.12 1.13 5.36 5.52 0.12 96.23
67.71 0.40 14.97 4.67 0.14 0.12 1.28 5.29 5.36 0.10 96.20
67.10 0.28 15.31 4.64 0.14 0.10 1.20 5.13 5.99 0.15 97.19
66.45 0.47 16.25 4.44 0.15 0.33 1.35 4.93 5.56 0.10 99.31
66.96 0.42 15.43 4.71 0.13 0.19 1.22 5.44 5.45 0.06 98.80
67.60 0.25 15.83 4.11 0.09 0.13 1.07 5.20 5.65 0.10 97.79
68.32 0.26 15.34 3.57 0.10 0.11 1.39 4.92 5.86 0.17 97.31
67.61 0.36 15.28 4.36 0.10 0.05 1.02 5.67 5.45 0.13 98.65
68.03 0.30 15.04 4.34 0.13 0.16 1.13 5.12 5.65 0.12 98.32
67.65 0.39 15.06 4.68 0.16 0.12 1.14 5.28 5.43 0.11 98.05
67.95 0.42 14.87 4.58 0.18 0.13 1.20 5.23 5.35 0.11 97.97

ATHO-G (n = 10)
Average 74.84 0.24 12.07 3.28 0.10 0.10 1.65 3.64 2.62 0.04
2σ 1.60 0.06 0.20 0.25 0.05 0.03 0.11 0.17 0.16 0.04
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Table 1 (continued)

Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Analytical total

Preferred value 75.60 0.26 12.20 3.27 0.11 0.10 1.70 3.75 2.64 0.04
Uncertainty (95%) 0.70 0.02 0.20 0.10 0.01 0.01 0.03 0.31 0.09 –

StHS6/80-G (n = 10)
Average 63.87 0.70 17.78 4.25 0.08 1.89 5.15 4.53 1.27 0.03
2σ 1.01 0.07 0.31 0.15 0.05 0.08 0.12 0.17 0.10 0.02
Preferred value 63.70 0.70 17.80 4.37 0.08 1.97 5.28 4.44 1.29 0.02
Uncertainty (95%) 0.50 0.02 0.20 0.07 0.00 0.04 0.09 0.14 0.02 0.01
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program (Reimer et al., 2013), and then a date range of 1010–930 cal BP
(95% confidence) years was given for constraining the age of this tephra
layer in Lake Sihailongwan. This age also overlaps precisely the ice core
and proximalwiggle-matching 14C ages for theCMA (e.g. Xu et al., 2013;
Sun et al., 2014a).

5. Discussion

5.1. Evidence for the CMA in the LVF

The existence of a cryptotephra layer from the sedimentary
contexts to the west of Changbaishan volcano is very significant to
the understanding of the correlations of tephra layers. Moreover, it
provides a direct and precise correlation and synchronization
between Northeast China, the Japan areas and Greenland ice cores.

Previous studies suggested that products from the Changbaishan
eruptions could not have been transported to the LVF, Northeast China
(e.g. Cheng et al., 2008; Mao et al., 2009), while others found some
Fig. 4. TAS (A) and harker diagrams (B and C) for glass shards extracted from Lake Sihailongw
comparison. All data have been normalized to anhydrous basis. Abbreviation: WHJ is Wuhaoj
Japan; NEEM is The North Greenland Eemian Ice Drilling; NGRIP is North Greenland Ice Core Pr
tephra layers frommajorHolocene eruptions, Kamchatka Peniunsula, Russia; andUlleung is the
et al. (1989). The boundary line dividing alkaline and subalkaline series is from Irvine and Bara
CBS and NEEM (Sun et al., 2014a); Guo (Guo et al., 2005); JPI (Hughes et al., 2013); JPS (Machi
(Philip et al., 2011); Ulleung (Machida et al., 1984); and LVF (Fan et al., 1999; Liu et al., 2009).
layers with composition similar to that of certain phases of the
Changbaishan eruptions, but found no compelling evidence to confirm
this (e.g. Guo et al., 2005; Zhao and Liu, 2012). For example, the tephra
layer detected by Guo et al. (2005) from Lake Sihailongwanwas located
at 69–70 cm of the core and has a unique rhyolitic glass composition,
which is distinctly different from our finding (Fig. 4). The age of this
tephra layer was restricted to 1630–1038 AD, younger than our new
results (Table 2) and the most recent dating results (e.g. Xu et al.,
2013; Sun et al., 2014a). The stratigraphy, morphology, geochemistry
and chronology should be considered as fully as possible when
correlating tephra layers among sedimentary settings (Blockley et al.,
2007; Lowe, 2011). Therefore, it is insufficient to state that the CMA
was deposited at the LVF based on the evidence provided by Guo
et al., 2005 or to correlate the cryptotephra layer recorded in Jinchuan
peat with the 1702 AD eruption of Changbaishan volcano (Zhao and
Liu, 2012) without a reference from proximal tephra.

The age of this tephra constrained by varve chronology and AMS14C
age on the plant leaves at 51 cm in our core (Table 2) overlaps the recent
an (52–53 cm). Glass data from proximal and distal tephra were also presented here for
ie; CBS is Changbaishan volcano; SHL is Lake Sihailongwan; JPI is Japan; JPS is the Sea of
oject; WQTJ is the widespread Quaternary tephra around Japan; Kamchatka is the marker
major tephra layers fromUlleung Island, South Korea. TAS diagramwas based on LeMaitre
gar (1971).
da et al., 1990); NGRIP (Coulter et al., 2012); WQTJ (Aoki and Machida, 2006); Kamchatka

Image of Fig. 4


Table 2
Summary of varve chronology and 14C dating results from the Lake Sihailongwan and the various published dating results from proximal and other distal environments on the
Changbaishan Millennium eruption.

Sites Methods Results Reference

Lake Sihailongwan Varve chronology 953 ± 37 AD This study
Conventional 14C age 940–1020 AD (2σ) This study

Changbaishan 14C wiggle matching 921–941 AD (2σ) Yin et al. (2012)
14C wiggle matching 940–952 AD (2σ) Xu et al. (2013)
14C wiggle matching 930–943 AD (2σ) Nakamura et al. (2007)
14C wiggle matching 945–960 AD (2σ) Yatsuzuka et al. (2010)
14C wiggle matching 945–984 AD (2σ) Horn and Schmincke (2000)
Ar–Ar 1.75–0.73 ka (2σ) Yang et al. (2014)
U-TIMS 1.65–0.35 ka (1σ) Wang et al. (1999)

Japan Varve chronology 937–938 AD Fukusawa et al. (1998)
Varve chronology 929 AD Kamite et al. (2010)

Greenland ice core GICC05 chronology 940–941 AD Sun et al. (2014a)
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dating results from Changbaishan proximal 14C wiggle-matching and
ice core ages, AD 940s (Xu et al., 2013; Sun et al., 2014a). The vesicular
nature of the glass is similar to that of the proximal tephra and distal
tephra from the Japan areas (e.g. Machida and Arai, 1983; Horn and
Schmincke, 2000). In addition, the irregular morphology of the glass
shards, the prominent peak of glass concentration, and a consistent
glass composition indicate that there are no clear secondary processes
working on this layer (Haflidason et al., 2000). More importantly, the
glass composition in this layer (ranging from trachyte to rhyolite) is
consistent with that of the proximal tephra, distal tephra from the
Japan areas, and ultra-distal tephra from the Greenland ice cores (Fig. 4).

Thus, this is the first time that reliable evidence of the deposition of
CMA in the LVF is presented andwe can confidently extend thewestern
limit of CMA deposition to the LVF. Our results also show that:

● This eruption was more violent than previously thought.
● CMA dispersal may have blanketed the entire region of the LVF.
● We predict that further cryptotephra investigations in other

sedimentary contexts will find this time-parallel marker.

5.2. Chemical characterization of the CMA

Many eruptions from different volcanoes and some tephra from the
same volcano may share identical major and minor element glass
compositions (e.g. Allan et al., 2008), which can lead to incorrect
correlations of tephra horizons. For example, during the late Pleistocene
and Holocene, there was extensive explosive volcanism in the LVF,
Japan areas, the east of Russia (Kuril–Kamchatka areas and Udokan
volcanic field) and the Ulleung Island, and their ejected tephra may be
transported and deposited all around the northeast Asia. Therefore,
careful inspections of published geochemical data from the contempo-
rary explosive volcanoes around this region should be carried out before
anchoring the source volcano of tephra layer in this lake.

There are no felsic volcanic eruptions in the LVF during the
Quaternary period (Fan et al., 1999; Guo et al., 2005; Liu et al.,
2009) and thus this tephra layer could not be from LVF (Fig. 4 A).
Ulleung Island is a Quaternary volcanic island and many of its tephra
layers have been serving as excellent marker layers around the Sea of
Japan and Japan (Machida et al., 1984; Furuta et al., 1986). But, its
distinctive trachytic/phonolitic chemical composition of glass shards
is very differrent from CMA (Fig. 4 A) and the predominant dispersal
of tephra to the east (Machida et al., 1984) make it impossible to be a
source for this tephra. There are also numerous explosive volcanic
fields in Japan and Kamchatka peninsula during this period,
however, these calcalkaline volcanoes affected mainly by subduction
related processes (e.g. Aoki and Machida, 2006; Ponomareva et al.,
2007; Philip et al., 2011) can be excluded as a possible source for
this tephra because of distinct different glass geochemistry (Fig. 4
A). The intracontinental characterized tephra from Udokan volcanic
field also can be ruled out as relative small eruptions, different
eruption timings and long distance to LVF (Ivanov et al., 2011).
Though certain of the widespread Quaternary tephra around Japan
falling in the field of CMA (Fig. 4 A), they can be separated easily
using the ratios of FeOt to CaO (Sun et al., 2014a).

CMA has a unique geochemical feature among these surrounding
and contemporary eruptions; the composition of glass ranges from
trachytic to rhyolitic member and only limited analysis results plotting
in between (Fig. 4 A). The major-element plots show that the CMA is
characterized by an alkaline composition (Fig. 4 A), and suggest that it
did not originate from a subduction related tectonic environment, but
rather from intra-continental vents characterized by high alkalis. A
broad spectrum and a linear change between pairs of oxides of glass
compositions (not shown here) indicate a complex magma mixing or
mingling system before this eruption.

Geochemically, the composition of this tephra in the Lake
Sihailongwan similar to CMA and typical plots (SiO2 vs. K2O and FeO
vs. CaO) (Fig. 4 B andC) implies that the CMA is the source of this tephra.
However, there are some differences between this tephra and the
published tephra from the east of Changbaishan volcano. Our results
show a contiguous composition ranging from trachyte to rhyolite and
concentrated mainly in the trachytic member, while others have a bi-
modal glass composition with only limited points in between (Fig. 4 B
and C). Furthermore, the dispersal of tephra is different between the
finding environments from the east and west of Changbaishan volcano,
that is the visible and invisible tephra found east (e.g. Machida and Arai,
1983; Hughes et al., 2013) and west of this volcano (this study),
respectively. Both compositional variations and differentiated tephra
dispersal are probably the results of a syn-eruptive dispersal change or
the effect of western low-level wind during this eruption (e.g. Lowe
et al., 2008; Shane et al., 2008; Sun et al., 2014b).

5.3. Chronological implications and linkage between Northeast China and
Japan areas

A precise timescale and geochemical characterization of glass are
useful for the construction of a chronological sequence pivotal to the
applications of tephrochronology in paleoclimatic research (Hall and
Pilcher, 2002). In the varved lake sediments, radiocarbon dating or
varve-chronological results from the host can assign ages for unknown
layers (e.g. Zillén et al., 2002; Liu et al., 2009; Wulf et al., 2012).
Moreover, characterized tephra layers dated by historical records or
very high-resolution dating methods can be used to estimate the
chronology and verify the precision of ages dated by other techniques
(e.g. Bramham-Law et al., 2013). There is a very abrupt lower limit of
glass shard concentration at Lake Sihailongwan (Fig. 2), which implies
that the impact of downward mobilization is negligible. Therefore, the
lower boundary of the peak may signify the onset of glass deposition
at this lake (e.g. Lowe and Turney, 1997). This tephra layer has been
accurately dated (Table 2) by ice core chronology, 14C wiggle matching
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and varve chronology (Xu et al., 2013; Sun et al., 2014a); therefore, it
can serve as a credible absolute time scale to refine other dating results
in this region.

There are about eight maar lakes, a dry maar, and peat bogs such as
Hani, Jinchuan and Gushantun peats (Fig. 1) (e.g. Hong et al., 2001;
Cheng et al., 2008; Jiang et al., 2008; Mao et al., 2009; Zhou et al.,
2010; Zhao and Liu, 2012), in the LVF, Northeast China. Our finding is
significant in developing and extending the tephrochronology
framework of this area and opens up a new perspective into studies of
the late Holocene chronology for such widely distributed sedimentary
contexts. B–Tm, used as an isochronous marker, has been detected in
tsunami, marine, and lake sediments in Japan and surrounding region
(e.g. Furuta et al., 1986; Nakagawa et al., 2002; Ikehara, 2003;
Nanayama et al., 2003, 2007; Okuno et al., 2011; Hughes et al., 2013;
Tanigawa et al., 2014). Consequently, the CMA offers a unique chance
to link these sediment sequences across Northeast China to the Japan
areas. Furthermore, the occurrence of this tephra in Greenland ice
cores (Sun et al., 2014a) makes it possible to synchronize and precisely
compare terrestrial, marine, and ice core archives.

The Medieval period of climate anomaly AD 950 to 1250 has been
recorded at Northeast China (e.g. Chu et al., 2012; Wang et al., 2012;
Chu et al., 2013), Japan (e.g. Goto et al., 2005), and other sites (e.g.
Laird et al., 1996; Chu et al., 2002; Mann et al., 2009); however, their
timing and intensity appear to vary regionally. High-precision
chronology constrained by tephra layers can be used to reveal abrupt
climatic transition and its geographic leads and lags effectively (e.g.
Lane et al., 2013b), providing an insight into themechanism of regional
climatic change. The CMA, occurred at the onset of theMedieval climate
anomaly (MCA) and can be used as a robust synchronization event,
providing a valuable and unique opportunity to delineate time-
transgressive processes in climatic studies aroundNortheast Asia during
the MCA.

6. Conclusions

We present, for the first time, evidence that supports the extension
of the western limit of the Changbaishan Millennium eruption to the
LVF, ~120 km west of Changbaishan volcano, Northeast China. This
stratigraphic, geochemical and 14C geochronological data from Lake
Sihailongwan sediments show a direct and precise correlation with
continental records in Northeast China, marine records in the Sea of
Japan, terrestrial records in Japan and Greenland ice cores. It also
suggests that a great potential exists to detect distal cryptotephra layers
in the sediments from Northeast China, facilitating a dated framework
for archives of the Medieval period of climate anomaly.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2015.01.013.
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