The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

Wuhui Duan a,⇑, Jiaoyang Ruan b,c, Weijun Luo d, Tingyong Li e, Lijun Tian a, Guangneng Zeng d, Dezhong Zhang f, Yijun Bai g, Jilong Li h, Tao Tao a,i, Pingzhong Zhang g, Andy Baker j, Ming Tan a,*

⇑Corresponding authors.
E-mail addresses: duanwuhui@mail.iggcas.ac.cn (W. Duan), tanming@mail.iggcas.ac.cn (M. Tan).

http://dx.doi.org/10.1016/j.gca.2016.03.037
0016-7037/© 2016 Elsevier Ltd. All rights reserved.

Abstract

This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18O p and how the isotopic signals are transmitted to various drip sites.

The monthly δ18O p values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18O p values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18O p in the MRC cannot be explained simply by either temperature or precipitation alone.

All the thirty-four drip sites are classified into three types based on the δ18O d variability. About 82% of them are static drips with little discernable variation in δ18O d through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18O d is narrower than that of δ18O p, the monthly response of δ18O d to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18O p very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18O p. About 6% of the thirty-four drip sites are...
medium-variability drips, with constant and relatively low $\delta^{18}O_d$ values in the wet season, but with variable and relatively high $\delta^{18}O_d$ values in the dry season, reflecting flow switching in the karst or evaporation inside the cave.

© 2016 Elsevier Ltd. All rights reserved.

Keywords: Eight caves in China; Three-year cave monitoring; Stable isotopes of precipitation and drip water

1. INTRODUCTION

The oxygen isotopic composition of speleothems ($\delta^{18}O_p$) has been used to interpret variations of past climate and atmospheric circulation (e.g. Dorale et al., 1992; McDermott et al., 1999, 2001; Wang et al., 2001, 2005; Fleitmann et al., 2003; Genty et al., 2003, 2006; Yuan et al., 2004; Spötl et al., 2006; Hu et al., 2008; Zhang et al., 2008; Cheng et al., 2009; Ma et al., 2012; Moseley et al., 2014; Duan et al., 2016). Now, with the development of high resolution sampling methods and in situ measurements, several studies have detected seasonally variable $\delta^{18}O_p$ which were used to explore sub-annual climatic and cave environmental signals (Kolodny et al., 2003; Treble et al., 2005, 2007; Johnson et al., 2006; D. Liu et al., 2008; Orland et al., 2009, 2012, 2014). These studies are always based on the assumption that the $\delta^{18}O_p$ broadly reflects that of the local precipitation. Consequently, when the climatic significance of $\delta^{18}O_p$ is interpreted, the isotope effects (Dansgaard, 1964) that control the oxygen isotopic composition of precipitation ($\delta^{18}O_p$) are often used. $\delta^{18}O_p$ profiles from low-latitude caves are mostly used as a proxy of local rainfall amount (Neff et al., 2001; Bar-Matthews et al., 2003; Fleitmann et al., 2004; Baker et al., 2007), whereas that from mid-high latitudes, especially in Europe, usually have been interpreted as a proxy of temperature (Lauritzen, 1995; McDermott et al., 1999, 2001; Onac et al., 2002; Genty et al., 2003, 2006; Spötl et al., 2006; Moseley et al., 2014). In addition, $\delta^{18}O_p$ has also been interpreted as variations in monsoon intensity (Wang et al., 2001, 2008; Yuan et al., 2004; Cheng et al., 2009), changes in moisture sources (Cruz, 2005; Cruz et al., 2006; Maher, 2008; LeGrande and Schmidt, 2009; Clemens et al., 2010; Dayem et al., 2010) and atmosphere circulation (Tan, 2014). In this context, the climatic signals embedded in $\delta^{18}O_p$ vary regionally, and can also be controversial, especially for Chinese $\delta^{18}O_p$ records (Clemens et al., 2010; Dayem et al., 2010; Johnson, 2011; Pausata et al., 2011; Lee et al., 2012; Wang and Chen, 2012; Tan, 2014; Z. Liu et al., 2014). Thus, to correctly interpret the climatic signals of $\delta^{18}O_p$, it is critical to identify the relative importance of the factors affecting the corresponding $\delta^{18}O_p$.

During the transmission from precipitation to drip water, processes such as seasonality of recharge (Bar-Matthews et al., 1996; Jones et al., 2000; Jones and Banner, 2003; Pape et al., 2010), mixing of water parcels of different ages (Yonge et al., 1985; Ayalon et al., 1998; Williams and Fowler, 2002; McDermott, 2004; Fairchild et al., 2006; Lachniet, 2009; Joe Lambert and Aharon, 2010; Li et al., 2011; Genty et al., 2014; Baldini et al., 2015; Comas-Bru and McDermott, 2015), evaporation in the soil and epikarst zone (Bar-Matthews et al., 1996; Ayalon et al., 1998; Denniston et al., 1999; Tang and Feng, 2001; Carrasco et al., 2006; Luo and Wang, 2008; Bradley et al., 2010; Wackerbarth et al., 2010; Cuthbert et al., 2014a; Comas-Bru and McDermott, 2015) and evaporation inside the cave (Ingraham et al., 1990; Caballero et al., 1996; Carrasco et al., 2006; Oster et al., 2012; Cuthbert et al., 2014b; Zeng et al., 2015), may modify the original signal of $\delta^{18}O_p$.

In previous research, the oxygen isotopic composition of drip waters ($\delta^{18}O_d$) has been found to (1) represent the annual or more long-term weighted average value of local $\delta^{18}O_p$ (Yonge et al., 1985; Caballero et al., 1996; Williams and Fowler, 2002; McDermott, 2004; Onac et al., 2008; Li et al., 2011; Riechelmann et al., 2011; Genty et al., 2014); (2) mirror the seasonal isotopic variations of surface precipitation (Li et al., 2000; Cruz, 2005; Van Beynen and Febrorriello, 2006; Cobb et al., 2007; Fuller et al., 2008; Genty, 2008); (3) just respond to the heavy rain events in the wet season (Bar-Matthews et al., 1996; Jones et al., 2000; Jones and Banner, 2003; Pape et al., 2010), or, (4) in arid regions, record the extent of evaporative enrichment of the drip water that occurs between recharge events (Cuthbert et al., 2014a). These studies cited above mainly focus on one cave or several caves in one area. As the karst process is complicated and individual, the $\delta^{18}O_d$ within a single cave even show some differences between each other (Bar-Matthews et al., 1996; Ayalon et al., 1998; Williams and Fowler, 2002; Van Beynen and Febrorriello, 2006; Luo et al., 2014; Genty et al., 2014). This would result in stalagmites formed from those isotopically different drip waters recording divergent palaeoclimatic signals. In general, the variations of $\delta^{18}O_d$ mostly depend on the specific discharge system rather than the climatic regime. Thereby, a detailed site-specific investigation of the relationship between large-scale climate, $\delta^{18}O_p$ variability, cave hydrology, and the $\delta^{18}O_d$ variability of different types of drip sites is essential to accurately interpret $\delta^{18}O_p$ signals.

This study aims to investigate the seasonal variations of $\delta^{18}O_p$ at a regional scale in the monsoon regions of China (MRC) and how the isotopic signals are transmitted to a variety of drip sites. An approximately three-year-long (May-2011 to April-2014) on-site rainfall and drip water monitoring program has been carried out with monthly to bi-monthly sampling intervals at eight caves in the MRC. Listed from south to north, the eight caves are Xianren cave (XR) in Yunnan Province, Baojinggong Cave (BJG) in Guangdong Province, Liangfeng cave (LF) in Guizhou Province, Furong cave (FR) in Chongqing, Penglaixian cave (PLX) in Anhui Province, Heshang cave (HS) in Hubei Province, Wanxiang cave (WX) in Gansu Province and Shihua cave (SH) in Beijing (Fig. 1).
2. STUDY SITES

All the eight cave sites have already been described in previous studies (Ban et al., 2008; Hu et al., 2008; Luo and Wang, 2008; Zhang et al., 2008, 2012; Cai et al., 2010; Ruan and Hu, 2010; Li et al., 2011, 2012; Duan et al., 2012; Tian et al., 2013) and the basic information of each cave is summarized in Table 1. Among the eight caves, XR, BJG, LF, FR, PLX and HS are under a subtropical monsoon climate, while WX is under a subtropical semi-arid climate and SH is under a temperate monsoon climate. Located within the MRC, each cave area has hot-wet summer and cold-dry winter, with more than 70% of the annual precipitation occurring in the wet season from May to October.

The CO₂ concentration in each cave shows seasonal variation with high values in summer and low values in winter, except HS (Table 1). Unlike other closed caves, HS is well-ventilated and the CO₂ concentration in the cave is relatively stable at about 470 ppmv (Table 1), slightly greater than that of atmospheric concentration.

3. METHODS

In each cave mentioned above, three to five drip sites have been selected for monitoring, a total of thirty-four drips (Table 2, Supplementary Fig. 1). The caves were monitored monthly to bi-monthly, and the measured parameters include surface air temperature and precipitation, cave air temperature, relative humidity, drip rate, and the δ¹⁸O and δD of precipitation and drip waters.

3.1. Field measurements

The surface air temperature outside each cave was recorded automatically by a HOBO Temp/RH Data Logger (H08-003-02), which was fixed in an instrument shelter near to the cave. Precipitation in each cave area was measured automatically by a tipping-bucket rain gauge (Data Logging Rain Gauge-RG3-M; resolution: 0.2 mm). Cave air relative humidity was measured using a handheld HANNA instrument HI 8564 thermo-hygrometer (resolution: RH: 0.1%, accuracy: 2%). The monthly actual evapotranspiration (AET) was calculated from local surface climate data using a water-balance model (Thornthwaite, 1948) as implemented in the USGS Thornthwaite model (McCabe and Markstrom, 2007). For months with missing data, AET were not calculated.

Drip rates were estimated by taking repeat counts of drops over 1 min, reported as drip/minute. For the MP1 and MP2, with continuous dripping, the recharge volume per minute (ml/minute) was measured instead of drip rate (Genty et al., 2001, 2014; Tooth and Fairchild, 2003). This method is only fit for discussing the seasonal variation of discharge, as any drip rate variations occurring more frequently than this sampling period were not monitored.
<table>
<thead>
<tr>
<th>Cave</th>
<th>Latitude, longitude, altitude (m)</th>
<th>Annual precipitation (mm/year)</th>
<th>Annual mean surface air temperature (°C)</th>
<th>Bedrock</th>
<th>Thickness of bedrock (m)</th>
<th>Thickness of soil (cm)</th>
<th>Vegetation</th>
<th>Climate</th>
<th>CO₂ concentration (ppmv)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR</td>
<td>24°07’N, 104°08’E, 1443</td>
<td>1143.3 ± 163.2</td>
<td>16.7 ± 0.5</td>
<td>Massive dolostone Middle Triassic-lower Limestone Middle Devonian Biogenic limestone Middle to Late Carboniferous</td>
<td>40–140</td>
<td>0–40</td>
<td>Liana and shrubs</td>
<td>Subtropical monsoon climate</td>
<td>570–12000</td>
<td>Duan et al., 2012</td>
</tr>
<tr>
<td>BJG</td>
<td>24°07’N, 113°21’E, 610</td>
<td>1835.9 ± 405.4</td>
<td>21.2 ± 0.5</td>
<td>ND</td>
<td>80–140</td>
<td>0–135</td>
<td>Evergreen defoliate broad-leaved forest</td>
<td>482–1842</td>
<td>Tian et al., 2013; Tong et al., 2013</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>26°16’N, 108°03’E, 600</td>
<td>1211.9 ± 178.4</td>
<td>18.5 ± 0.4</td>
<td>Evergreen broad-leaf forest</td>
<td>300–500</td>
<td>30–90</td>
<td>Evergreen arbor, liana and shrubs</td>
<td>500–2000</td>
<td>Luo and Wang, 2008;</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>29°13’N, 107°54’E, 480</td>
<td>1026.6 ± 201.5</td>
<td>17.4 ± 0.4</td>
<td>Evergreen broad-leaved forest and defoliate broad-leaved forest</td>
<td>300–500</td>
<td>30–90</td>
<td>Woody perennial plant and shrub-grass</td>
<td>470</td>
<td>Hu et al., 2008; Ruan and Hu, 2010</td>
<td></td>
</tr>
<tr>
<td>PLX</td>
<td>30°14’N, 117°32’E, 170</td>
<td>1780.7 ± 356.1</td>
<td>16.1 ± 0.4</td>
<td>Evergreen broad-leaf forest and defoliate broad-leaved forest</td>
<td>300</td>
<td>40</td>
<td>Subtropical semi-arid climate</td>
<td>392–1552</td>
<td>Zhang et al., 2008</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>30°27’N, 110°25’E, 294</td>
<td>1343 ± 297.7</td>
<td>16.5 ± 0.5</td>
<td>Evergreen broad-leaf forest and defoliate broad-leaved forest</td>
<td>30–250</td>
<td>20–100</td>
<td>Grass, arbor and perennial shrubs</td>
<td>283–2024</td>
<td>Ban et al., 2008; Cai et al., 2010</td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>33°19’N, 105°00’E, 1200</td>
<td>460.7 ± 94.6</td>
<td>14.9 ± 0.6</td>
<td>Evergreen broad-leaf forest and defoliate broad-leaved forest</td>
<td>30–130</td>
<td>0–100</td>
<td>Shrub and grass, arbor</td>
<td>250–3000</td>
<td>Li et al., 2011, 2012</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>39°47’N, 115°56’E, 251</td>
<td>539.2 ± 134.2</td>
<td>12.2 ± 0.6</td>
<td>Evergreen broad-leaf forest and defoliate broad-leaved forest</td>
<td>30–130</td>
<td>0–100</td>
<td>Evergreen defoliate broad-leaved forest</td>
<td>482–1842</td>
<td>Tian et al., 2013; Tong et al., 2013</td>
<td></td>
</tr>
</tbody>
</table>

Table 1
Summary of basic characteristics of the studied caves. “ND” denotes no data. The annual precipitation and mean surface air temperature were calculated based on local meteorological data (AD 1981-2010), with 1σ stand deviation (http://data.cma.cn).
Table 2
Summary of δ18O, δ18Oδ, drip rate, cave air temperature and relative humidity for the studied caves. Note that the "Mean" δ18O of rainwater is the weighted mean δ18O of precipitation. The "Mean" δ18O of rainwater is the weighted mean δ18O of precipitation when the monthly water balance is greater than zero. The mean drip rate, cave air temperature and relative humidity are shown with 1σ standard deviation. Note that the drip rates of MP1 and MP2 are presented as the recharge volume per minute (ml/minute). The number after each drip site denotes the drip type described in Table 4. N is the number of samples.

<table>
<thead>
<tr>
<th>Cave</th>
<th>Rainfall and drip site</th>
<th>δ18O (VSMOW, ‰)</th>
<th>Drip rate (drip/minute)</th>
<th>Cave air temperature (°C)</th>
<th>Relative humidity (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Δ Mean/Meani</td>
<td>C.V (%)</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>XR</td>
<td>Rainwater</td>
<td>12.7</td>
<td>−10.0/−10.7</td>
<td>48.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>X6 (1)</td>
<td>0.6</td>
<td>−9.5</td>
<td>1.8</td>
<td>7.3 ± 9.2</td>
<td>18.7 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>X7 (1)</td>
<td>0.5</td>
<td>−9.6</td>
<td>1.6</td>
<td>5.6 ± 10.2</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>X8 (1)</td>
<td>0.8</td>
<td>−9.4</td>
<td>1.7</td>
<td>3.1 ± 53.0</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>X11 (1)</td>
<td>0.8</td>
<td>−9.3</td>
<td>2.7</td>
<td>1.9 ± 5.0</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>X13 (1)</td>
<td>0.8</td>
<td>−9.3</td>
<td>2.2</td>
<td>1.5 ± 1.3</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>BJG</td>
<td>10.5</td>
<td>−6.9/−6.9</td>
<td>44.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>BJG2 (1)</td>
<td>0.8</td>
<td>−5.8</td>
<td>3.7</td>
<td>11.8 ± 4.7</td>
<td>21.9 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>BJG3 (1)</td>
<td>1.2</td>
<td>−5.8</td>
<td>5.5</td>
<td>5.4 ± 8.8</td>
<td>21.8 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>BJG6 (2)</td>
<td>3.3</td>
<td>−5.1</td>
<td>21.2</td>
<td>11.6 ± 25.8</td>
<td>19.6 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>BJG7 (3)</td>
<td>2.9</td>
<td>−5.4</td>
<td>13.5</td>
<td>108.2 ± 178.0</td>
<td>20.4 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>BJG8 (1)</td>
<td>1.2</td>
<td>−5.9</td>
<td>5.5</td>
<td>31.2 ± 63.2</td>
<td>21.7 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>LF</td>
<td>12.5</td>
<td>−7.2/−6.9</td>
<td>60.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>LF1 (1)</td>
<td>0.8</td>
<td>−7.5</td>
<td>2.6</td>
<td>4.2 ± 1.5</td>
<td>13.9 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>LF5 (1)</td>
<td>1.4</td>
<td>−6.9</td>
<td>5.6</td>
<td>4.1 ± 4.8</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>LF6 (3)</td>
<td>5.9</td>
<td>−6.1</td>
<td>27.4</td>
<td>1.0 ± 0.2</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>FR</td>
<td>12.9</td>
<td>−6.3/−6.2</td>
<td>64.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>MP1 (1)</td>
<td>0.8</td>
<td>−7.2</td>
<td>3.0</td>
<td>12.6 ± 7.8</td>
<td>16.4 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>MP2 (1)</td>
<td>0.9</td>
<td>−7.2</td>
<td>3.0</td>
<td>20.2 ± 6.5</td>
<td>16.6 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>MP3 (1)</td>
<td>0.9</td>
<td>−7.2</td>
<td>2.8</td>
<td>31.2 ± 6.4</td>
<td>16.3 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>MP4 (1)</td>
<td>0.5</td>
<td>−7.6</td>
<td>2.1</td>
<td>16.8 ± 3.3</td>
<td>17.6 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>MP5 (1)</td>
<td>0.5</td>
<td>−7.6</td>
<td>2.1</td>
<td>11.1 ± 3.4</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>PLX</td>
<td>12.4</td>
<td>−7.9/−7.9</td>
<td>42.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>PLX1 (2)</td>
<td>2.5</td>
<td>−7.5</td>
<td>7.6</td>
<td>14.2 ± 6.6</td>
<td>16.3 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>PLX2 (1)</td>
<td>1.5</td>
<td>−7.3</td>
<td>5.6</td>
<td>0.8 ± 0.2</td>
<td>18.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>PLX3 (2)</td>
<td>2.2</td>
<td>−7.2</td>
<td>7.3</td>
<td>10.4 ± 10.7</td>
<td>17.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>PLX4 (1)</td>
<td>1.0</td>
<td>−7.3</td>
<td>4.5</td>
<td>2.4 ± 1.1</td>
<td>17.9 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>HS</td>
<td>16.8</td>
<td>−7.9/−8.2</td>
<td>67.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>HS4 (1)</td>
<td>1.5</td>
<td>−7.2</td>
<td>4.8</td>
<td>13.0 ± 3.9</td>
<td>18.8 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>HS6 (1)</td>
<td>1.5</td>
<td>−7.3</td>
<td>4.3</td>
<td>8.0 ± 1.3</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>HS7 (1)</td>
<td>1.7</td>
<td>−7.4</td>
<td>5.7</td>
<td>4.0 ± 1.0</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>HS9 (2)</td>
<td>3.1</td>
<td>−6.9</td>
<td>13.8</td>
<td>18.0 ± 22.2</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>10.0</td>
<td>−8.3/</td>
<td>40.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>WX1 (1)</td>
<td>0.6</td>
<td>−9.1</td>
<td>2.4</td>
<td>9.1 ± 3.4</td>
<td>11.8 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>WX2 (1)</td>
<td>0.9</td>
<td>−9.1</td>
<td>1.9</td>
<td>160.3 ± 109.3</td>
<td>11.2 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>WX3 (1)</td>
<td>0.6</td>
<td>−9.1</td>
<td>1.8</td>
<td>131.7 ± 22.9</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>SH</td>
<td>10.0</td>
<td>−8.7/−9.4</td>
<td>36.0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>PL1 (1)</td>
<td>0.7</td>
<td>−8.9</td>
<td>2.0</td>
<td>5.6 ± 2.4</td>
<td>15.8 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>PL2 (1)</td>
<td>1.5</td>
<td>−8.8</td>
<td>3.8</td>
<td>0.6 ± 0.2</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>PL3 (1)</td>
<td>1.0</td>
<td>−8.8</td>
<td>2.3</td>
<td>5.5 ± 5.1</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>SH (1)</td>
<td>2.3</td>
<td>−8.9</td>
<td>5.2</td>
<td>12.1 ± 7.6</td>
<td>15.5 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>JG (1)</td>
<td>2.0</td>
<td>−8.9</td>
<td>4.3</td>
<td>47.0 ± 46.5</td>
<td>15.4 ± 1.3</td>
</tr>
</tbody>
</table>
3.2. Water sample collection

Monthly to bi-monthly cumulative precipitation samples were collected above each cave in an open area near the cave entrance. Following the International Atomic Energy Agency (IAEA) protocol, rainwater was collected in a 5 L HDPE bottle with a funnel. A ping-pong ball was placed at the funnel mouth and the bottom of the HDPE bottle was coated with approximately 0.5 cm-thick mineral oil to prevent evaporation. The sub-samples of the homogenized precipitation were removed into pre-cleaned 8 ml glass sealed bottles with no head space for δ18O and δD analysis.

Cave drip water samples were collected on the same dates as precipitation. The drip water was collected in a 500-ml HDPE bottle that was fixed under the drip site for one night to collect enough water. To investigate whether the “instantaneous” samples are representative of the seepage water isotopic composition between each sampling, we also sampled the coeval accumulated drip water at site X13 for comparison. We did not find significant differences between them (Supplementary Fig. 2). Aliquots for δ18O and δD analyses were stored in pre-cleaned 8-ml glass sealed bottles with no head space. To minimize evaporation prior to analysis, all rain and drip-water samples were refrigerated.

3.3. Sample analysis

The δ18O and δD analyses of precipitation and cave drip water collected before 2013 were performed on a cavity ringdown laser spectroscopy (CRDS) (Picarro L2130i Laser Absorption Water Isotopic Spectrometer) in the Key Laboratory of Tibetan Environment Change and Land Surface Processes, Chinese Academy of Sciences. The oxygen isotope measurement of rainwater and drip water samples collected after 2013 were performed on a cavity ringdown laser spectroscopy (CRDS) (Picarro L1102i Laser Absorption Water Isotopic Spectrometer) in the Water Isotopes and Water Rock Interaction Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences. The precision was 0.1‰ for δ18O and 0.5‰ for δD. Results are reported as relative to the standard VSMOW (Vienna Standard Mean Ocean Water). The mean δ18O has been weighted by the corresponding precipitation. For months with missing data, δ18O data were not included in the calculations.

4. RESULTS

4.1. Stable isotopic composition of local precipitation

Raw δ18Op data are presented in Supplementary Table 1 and summarized in Tables 2 and 3. At each study site, δ18Op demonstrates a seasonal trend with most negative values in the wet season (May to October) and less negative values in the dry season (November to April) (Fig. 2, Table 3), which is in agreement with the large regional and long term study results performed by the Global Network of Isotopes in Precipitation (GNIP) (Johnson and Ingram, 2004; Dayem et al., 2010) and the Chinese Network of Isotopes in Precipitation (CHNIP), with the exception of SH (J. Liu et al., 2014).

Deuterium excess (d) of precipitation (\(d = \delta D - 8 \times \delta^{18}O\)) (Dansgaard, 1964) exhibits significant seasonal variations with lower values (less than 11.5‰) in the wet season and higher values (greater than 13.0‰) in the dry season (Fig. 2, Table 3). For each cave, although the monthly δ18Op value displays a negative correlation with monthly precipitation (MP), only XR, LF and HS are significant at the 95% level (Table 3). For all the caves except SH, there is a negative linear relationship between monthly δ18O and local monthly average surface air temperature (MAT), and for LF, FR and HS, this is significant at the 99% level (Table 3). The correlations between monthly δ18O and MAT and MP are consistent with the results of GNIP (Johnson and Ingram, 2004; Dayem et al., 2010) and CHNIP (J. Liu et al., 2014), long-term investigations, with the exception of SH. The equation of the Local Meteoric Water Line (LMWL) for each cave was established from the δ18O and δD values of monthly rainwater samples collected during the monitoring period, and compared to the Global Meteoric Water Line defined as δD = 8 × δ18O + 10 (Craig, 1961) (Fig. 3, Table 3). Only at SH, the slope of LMWL is lower than the global average slope of 8 (Fig. 3h, Table 3), which indicates the

Table 3

Summary of seasonal variations of δ18Op, d, the LMWL and the correlations of δ18Op-MP and δ18Op-MAT for the studied caves.

<table>
<thead>
<tr>
<th>Cave</th>
<th>δ18O (%)</th>
<th>d</th>
<th>r</th>
<th>LMWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR</td>
<td>−10.7</td>
<td>−0.41</td>
<td>−0.63</td>
<td>8.8</td>
</tr>
<tr>
<td>BIG</td>
<td>−7.9</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>LF</td>
<td>−8.8</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>FR</td>
<td>−6.8</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>PLX</td>
<td>−7.8</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>HS</td>
<td>−9.2</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>WX</td>
<td>−8.9</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
<tr>
<td>SH</td>
<td>−7.5</td>
<td>−0.33</td>
<td>−0.31</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Notes:
- "WS" and "DS" denote wet season and dry season, respectively.
- "r^\delta_{18}O-MP" and "r^\delta_{18}O-MAT" denote the spearman coefficients of δ18Op-MP and δ18Op-MAT, respectively.
- ** Denotes \(P < 0.01\).
- * Denotes \(P < 0.05\).
Fig. 2. The time series of δ^{18}O, δ^D, MP and MAT for the eight caves in this study. "ND" denotes no data.

Fig. 3. Local Meteoric Water Line (LMWL) with 95% confidence intervals (dashed lines) from the measured rain water samples with all drip sites plotting on it. The blue dot denotes the weighted mean data of precipitation. The Global Meteoric Water Line (GMWL) is shown for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
evaporation below the cloud is significant at SH, but it could be negligible at other caves, and this process may explain why rainfall data at SH has a greater spread from the LMWL compared to the other sites.

In general, all the results mentioned above are closely agreement with that of previous studies (Johnson and Ingram, 2004; Dayem et al., 2010; J. Liu et al., 2014), except SH, which is located near the northern limit of the MRC. At SH, although most of the precipitation occurs during the summer months, there is a lower total precipitation amount compared to more southern sites, and a larger proportion of precipitation may be from locally recycled moisture.

4.2. Stable isotopic composition of drip water

Raw $\delta^{18}O_d$ data are presented in Supplementary Table 1 and summarized in Table 2. All the drip water samples generally plot close to or slightly below the corresponding LMWL (Fig. 3). Note that at SH, almost all of the samples plot slightly below the LMWL (Fig. 3h).

Compared to local $\delta^{18}O_p$, the $\delta^{18}O_d$ in all the eight caves have low variability. The drip sites can be generally divided into three categories (Table 4) on the basis of the patterns of $\delta^{18}O_d$ (Fig. 4) through the study period: (Type 1) static drips with little discernable variation in $\delta^{18}O$ during the whole monitoring period (Coefficient of variation <6%, C.

Table 4
The classification of the thirty-four drips in the studied caves.

<table>
<thead>
<tr>
<th>Type of drip site</th>
<th>Characters of drip water $\delta^{18}O$</th>
<th>Drip site</th>
<th>Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Static drip</td>
<td>Little discernable variation in dripwater $\delta^{18}O$ (C.V within 6%) during the whole monitoring episode</td>
<td>X6, X7, X8, X11, X13, BJG2, BJG3, BJG8, LF1, LF5, MP1, MP2, MP3, MP4, MP5, PLX2, PLX4, HS4, HS6, HS7, WX1, WX2, WX3, PL1, PL2, PL3, SH, JG</td>
<td>82</td>
</tr>
<tr>
<td>2 Seasonal-variability drip</td>
<td>Some can inherit the seasonal signals of rainfall</td>
<td>BJG6, HS9, PLX1, PLX3</td>
<td>12</td>
</tr>
<tr>
<td>3 Medium-variability drip</td>
<td>Constant and low drip water $\delta^{18}O$ values in the wet season but variable and relatively high in the dry season</td>
<td>BJG7, LF6</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 4. The time-series of $\delta^{18}O_p$ and $\delta^{18}O_d$ and MP. “ND” denotes no data.
V for abbreviation hereafter). Here, C.V, the quotient of the standard deviation and the mean δ¹⁸O value expressed as a percentage, provides a suitable dimensionless assessment of δ¹⁸O variability: (Type 2) seasonal-variability drips with variable monthly δ¹⁸Od values, some of which follow the trend of local δ¹⁸Owp (Type 3) medium-variability drips with constant and low δ¹⁸Og values in the wet season, but with variable and relatively high values in the dry season. All the drip sites in XR, FR, WX and SH are classified as type 1 (Table 2). In the other caves, the drips in each cave could be classified into different types: In LF, one drip can be classified as type 3, and the others can be classified as type 1. In HS and PLX, one or two drips can be classified as type 2 and the others can be classified as type 1. In BJG, there are all the three drip types (Table 2).

In general, type 1 are the most widespread drips, which can be found in each cave (Tables 2 and 4). Specially, for sites PL2, SH and JG, although the C.V values are within 6% (Table 2) which are classified as type 1, they still could respond to heavy rain events with ¹⁸O-depleted rainwater (Fig. 4h).

5. DISCUSSION

5.1. Controls on the seasonal isotopic variability of precipitation in the MRC

To understand the climatic signals contained in δ¹⁸Owp, we need to investigate how atmospheric processes affect it, and which of these has the largest influence. The lack of a significant relationship would indicate that the dominant control on δ¹⁸Owp is another process, or that no single dominant process, or simple set of processes could account for it.

With respect to the seasonal cycle, MAT and δ¹⁸Owp values covary (anti-phased) at all the sites. The highest temperature is in summer and the most negative δ¹⁸Owp value is in summer to early fall. The δ¹⁸Owp values generally then become less negative in winter, when the air temperature is lowest (Fig. 2). Consequently, the monthly δ¹⁸Owp and MAT values are negatively correlated at all sites except SH, which is located at the northern margin of the MRC, although the statistical significance varies (Table 3). The negative δ¹⁸Owp-MAT relationship in the MRC is remarkably different from that observed in Europe, which is always positive though the significance and slope vary in multiple regressions have been used in previous studies (Johnson and Ingram, 2004; Dayem et al., 2010) calculated the relationship between monthly anomalies of δ¹⁸Owp and MAT, and found that they do not generally correlate well with each other. Thus, they argued that the seasonal variation of δ¹⁸Owp and temperature primarily reflect independent processes, both of which are regulated by changes in insolation.

Rainfall amount may also be an important control on the δ¹⁸Owp in the MRC. If this is the case, the negative correlations between MP and monthly δ¹⁸Owp will be expected, as commonly observed in low latitude areas (Dansgaard, 1964; Clark and Fritz, 1997). At all stations in this study, monthly δ¹⁸Owp values are to some extent negatively correlated with MP, but only XR, HS and LF pass the significant test at the 95% level (Table 3). This indicates that although there is a trend of decreasing δ¹⁸Owp values with increasing precipitation, an monthly amount effect (Dansgaard, 1964) cannot account for most of the δ¹⁸Owp variations in the MRC, which is in agreement with the results of GNIP (Dayem et al., 2010) and CHNIP (J. Liu et al., 2014), large-regional investigations of δ¹⁸Owp in China.

The amount effect is based on the hypothesis that evaporation and isotopic equilibrium fractionation tend to increase δ¹⁸Owp in small amounts of rain (Dansgaard, 1964). Therefore, the amount effect will be most apparent where the water source is invariant. However, in the MRC, the water vapor source and the transport paths change greatly due to changes in the atmospheric circulation (Supplementary Fig. 3). In summer, there are three main low latitudinal vapor inflow corridors into China, namely southwestern corridor, south China sea corridor, and southeastern corridor (Supplementary Fig. 3a,b) (Tian et al., 2004; Sun et al., 2006; J. Liu et al., 2008). For most portions of the MRC, the Indian Ocean, through the southwestern corridor, supplies the long-distance water vapor depleted in ¹⁸O, but the Pacific Ocean, through southeastern corridor, supplies the short-distance water vapor enriched in ¹⁸O (Tian, 2014). Therefore, if the precipitation originates from Pacific Ocean, the short-distance vapor source, the rainwater will be more enriched in ¹⁸O than that from Indian Ocean, the long-distance vapor source, whether the former rainfall amount is larger or not than the latter. This scenario may mask the amount effect.

The precipitation patterns and vapor sources also change seasonally in the MRC (Supplementary Fig. 3) (Araguás-Araguás et al., 1998; Yang et al., 2011; Wu et al., 2012). δ is a characteristic parameter of the source area of the water vapor from which rain originates (Rozanski et al., 1982; Lewis et al., 2013). High humidity during the formation of moist air masses leads to δ values <10‰, while low humidity at the vapor source typically yields δ values >10‰ (Clark and Fritz, 1997). δ of rainwater in each cave area shows the same seasonal variation, with lower values (less than 11.5‰) in the wet season but higher values (greater than 13.0‰) in the dry season.
This suggests that the rainfall in the MRC in the wet season is sourced from tropical air masses, the Pacific Ocean, Indian Ocean or South China Sea (Supplementary Fig. 3a,b), where the humidity is high. In contrast, the rainfall in the dry season is mostly sourced in continental air mass from north, northwest or from local recycled moisture (Supplementary Figs. 3c–f), where the humidity is low, which is in agreement with the previous studies (Araguás-Araguás et al., 1998; Yang et al., 2011; Wu et al., 2012). As noted above, the precipitation in the wet season from tropical maritime air mass has lower $\delta^{18}O_p$ values, while the precipitation in the dry season from continental air mass has higher $\delta^{18}O_p$ values. This could be the reason why monthly $\delta^{18}O_p$ values are to some extent negatively correlated with MP in the MRC.

In short, the variation of $\delta^{18}O_p$ in the MRC is highly complex and a large portion of the variance is unexplained by either temperature or precipitation and may be attributed to some other factors, such as atmospheric circulation (Tan, 2014).

5.2. Relationship between the oxygen isotopic composition of precipitation and drip water

For all caves except XR and SH, the difference between the multi-year weighted mean $\delta^{18}O_p$ of precipitation and the multi-year weighted mean $\delta^{18}O_p$ of precipitation for months when water balance >0 mm is within 0.3‰ (for XR and SH, the difference is 0.7‰) (Table 2). These suggest that the soil moisture deficit is not great enough to affect the infiltration (Fig. 5). In addition, there are some limitations inherent to calculate AET with monthly meteorological data: (1) they will overestimate AET in the MRC, so any water balance deficit will be an overestimate; (2) water balance calculated at monthly time steps can give a negative water balance for the monthly total, but it should be remembered that recharge is still possible from short-duration, high-volume rain events. This scenario has also been observed in Europe (Genty et al., 2014; Comas-Bru and McDermott, 2015).

The monitoring results show that the isotopic composition of most drip waters plots close to or slightly below the corresponding LMWL (Fig. 3). This indicates that most of $\delta^{18}O_d$ reflect that of meteoric water above the caves (Caballero et al., 1996; Cruz, 2005; Pape et al., 2010). The drip waters plotting below the LMWL may have experienced evaporative effects prior to being collected (Pape et al., 2010).

Of the thirty-four drips, twenty-eight drip sites can be classed as type 1 drip (82%) (Table 4), displaying stability in $\delta^{18}O_d$, with C.V less than 6% throughout the study period. This suggests that the residence time of seepage water in these stations is more than three years.

For most of these drips ($n=17$), the range of $\delta^{18}O_d$ is <1‰ (Table 2). Attenuated seasonal variability of $\delta^{18}O_d$ relative to $\delta^{18}O_p$ has been noted in many previous studies.
(Yonge et al., 1985; Caballero et al., 1996; Williams and Fowler, 2002; McDermott, 2004; Genty, 2008; Genty et al., 2014; Luo and Wang, 2008; Onac et al., 2008; Li et al., 2011; Riechelmann et al., 2011). This is always attributed to drip water homogenization via mixing of multi-year precipitation in the soil and epikarst zone above the cave. Among the twenty-eight of the static drips, for LF1, LF5, PL1, PL2, PL3, SH and JG, the respective mean δ^{18}O$_d$ value is in agreement with the coeval weighted mean δ^{18}O$_d$ value (the difference is within 0.3‰) (Table 2). For LF1 and LF5, all the drip water samples plot on the LMWL (Fig. 3c), which reveals their meteoric origin and therefore that almost all of the rainfall events could be infiltrated into the karst unsaturated zone and well mixed. As a consequence, the annual or long-term climatic signals embedded in the isotopic composition of precipitation could be recorded by these drip waters, and in turn, captured by the stalagmites growing under them. However, for PL1, PL2, PL3, SH and JG, all the samples plot below the LWML (Fig. 3h), indicating that they may have experienced some evaporative effects prior to infiltrating into the cave (Fig. 5h). Thus, although the respective average δ^{18}O$_d$ value is in agreement with the weighted mean value of δ^{18}O$_d$ (Table 2), this is likely to be the balance of isotopically light infiltration water and subsequent 18O enrichment due to evaporation before reaching to the drip sites (Fig. 5h). Nonetheless, for sites PL2, SH and JG, the δ^{18}O$_d$ can record the signals of heavy rain events with more 18O-depleted rainwater in summer (Fig. 4h). For X6, X7, X8, X11, X13, PLX2, PLX4, HS4, HS6 and HS7, the respective mean δ^{18}O$_d$ value is slightly higher (within 0.7‰) than the coeval weighted mean δ^{18}O$_d$ (Table 2). The isotopic enrichment may be attributed to evaporation processes within the soil (Comas-Bru and McDermott, 2015), the epikarst (Cuthbert et al., 2014a) or the loss of some 18O-depleted summer precipitation due to run off or vegetation transpiration (Genty et al., 2014) through which, there is generally no fraction of isotopes (Obrist et al., 2004). Nonetheless, as the δ^{18}O$_d$ values of these sites are quite constant during the study period, the stalagmites under them may inherit the long-term (maybe more than decadal time scale) climatic signals embedded in the isotopic composition of the water balance (precipitation input and evaporative enrichment or the seasonal recharge) (Baker et al., 2013). For sites BJG2, BJG3 and BJG8, the mean δ^{18}O$_d$ value of each site is nearly identical, which is much higher (about 1‰) than the coeval weighted mean δ^{18}O$_d$ value (Table 2), indicating these drips may be recharged mainly by more strongly evaporated older water stored in the epikarst zone or the local water balance too (Baker et al., 2013). For sites MP1, MP2, MP3, MP4, MP5, WX1, WX2 and WX3, the respective mean δ^{18}O$_d$ value is lower (within 1‰) than the coeval weighted mean δ^{18}O$_d$ value (Table 2). Previous studies attributed this behavior to the selective recharge of seasonal precipitation (White, 1988; Bar-Matthews et al., 1996; Jones et al., 2000; Jones and Banner, 2003; Tooth and Fairchild, 2003; Bradley et al., 2010; Pape et al., 2010; Fairchild and Baker, 2012; Genty et al., 2014.). They argued that there is a precipitation amount threshold, which must be exceeded for water to infiltrating into aquifer, meanwhile, the small rainfall events may be lost by evapotranspiration before infiltrating into the soil or epikarst zones. For FR and WX, during the rainy season, the precipitation is mainly composed of heavy rain events with 18O-depleted rainwater, whereas during the dry season, it is mainly composed of light rain events with 18O-enriched rainwater (Fig. 2d and g). These suggest that parts of 18O-enriched rain in the dry season are too light to exceed the threshold and infiltrate into the epikarst zone. As the δ^{18}O$_d$ values of each drip site are quite constant during the study period, this kind of drips may be recharged by the well-mixed stored water, which primarily preserves the homogenization of isotopic compositions of the heavy rains in the wet season. Consequently, δ^{18}O$_d$ recharged by these drips should primarily record the wet season climate conditions as well as some portions of the signals of the dry season in greater timescale.

In general, for type 1 drips, although the δ^{18}O$_d$ is quite constant, with C.V less than 6% throughout the study period, their drip rates are not necessary static (Fig. 6). Independence between the drip rate and δ^{18}O$_d$ has already been observed in a previous study (Genty et al., 2014), which was attributed to the existence of a mixing reservoir with a piston flow functioning above these drips. Additionally, for the stalagmite originating from type 1 drips, any seasonal variations of δ^{18}O$_d$ must reflect in-caves processes (such as the variability of cave temperature) rather than the original sub-annual oxygen isotopic variability in local precipitation (Ruan and Hu, 2010; Feng et al., 2014). Among the thirty-four drip sites in the eight caves, only four sites (BJG6, HS9, PLX1 and PLX3) (12%) can be classified as type 2 drip (Tables 2 and 4). For sites BJG6 and HS9, although the range of δ^{18}O$_d$ is narrower than that of rainfall, it tracks the seasonal trend of local δ^{18}O$_d$ very well, with highest values in the dry season and lowest values in the wet season (Fig 4b, e). Accordingly, δ^{18}O$_d$ and δ^{18}Or show significant positive correlations (the spearman coefficient: $r = 0.67$, $p < 0.01$ for BJG6; $r = 0.65$, $p < 0.01$ for HS9). As the δ^{18}O$_d$ show seasonal variations, the average δ^{18}O$_d$ have been weighted by the drip rate of each site. For HS9, the average δ^{18}O$_d$ value is in agreement with the coeval local weighted mean δ^{18}O$_d$ value (Table 2). This suggests that most of the recent precipitation, mixed with some old stored water, can be transmitted through the karst aquifer to this drip within one month, which can also be confirmed by the rapid response of drip rate to precipitation amount (Fig. 6e). This type of drip has been observed in some previous studies (Li et al., 2000; Cruz, 2005; Van Beynen and Febbroriello, 2006; Cobb et al., 2007; Fuller et al., 2008). For BJG6, however, the average δ^{18}O$_d$ value is higher than the weighted average of coeval δ^{18}O$_d$ (Table 2). The difference may reflect mixing of freshly infiltrated water with stored water in the epikarst zone which has undergone evaporative enrichment (Tian et al., 2013;
or it could also result from the loss of some \(\delta^{18}O \)-depleted summer precipitation due to run off or vegetation transpiration (Genty et al., 2014), while still inheriting most of the seasonal signals of recent \(\delta^{18}O_p \). However, for PLX1 and PLX3, although the \(\delta^{18}O_d \) values vary seasonally, they do not follow the trend of coeval \(\delta^{18}O_p \) well (Fig. 4f) and the average \(\delta^{18}O_d \) values are higher than the coeval weighted average of \(\delta^{18}O_p \) (Table 2). These indicate that this type of drips can neither inherit the seasonal signal nor the longer-time scale signal of \(\delta^{18}O_p \), though their drip rates can response rainfall amount quickly (Fig. 6f). The independence between the drip rate and \(\delta^{18}O_d \), suggesting these drips may be recharged through complicated infiltration system, mixing fracture, conduit and piston flow.

In general, for type 2 sites, although all the drip rates can synchronously respond to precipitation amount (Fig. 6), the \(\delta^{18}O_d \) does not necessary show a quick response to \(\delta^{18}O_p \), depending on the specific drip (Fig. 4).

Among the thirty-four drips, only BJG7 and LF6 can be classed as type 3 drip (6%) (Tables 2 and 4), where the \(\delta^{18}O_d \) values are constant and low in the wet season, but variable and relatively high in the dry season (Fig. 4b, c). For BJG7, during the wet season, the mean value of \(\delta^{18}O_d \) is \(-5.7\%\), nearly identical to the respective mean value of BJG2, BJG3 and BJG8 in the same cave (Fig. 4b, Table 2). This indicates that, during the wet season, like BJG2, BJG3 and BJG8, the recharge source of BJG7 is mainly the older water stored in the reservoir, mixing with the present-day precipitation. Whereas, during the dry season, though the range of \(\delta^{18}O_d \) is lower than that of rainfall, it tracks the pattern of \(\delta^{18}O_p \) well, with the average of \(-5.1\%\), which is nearly identical to the weighted average coeval \(\delta^{18}O_p \) (\(-5.2\%\)). This suggests that, during the dry season, the \(\delta^{18}O_d \) can respond to the \(\delta^{18}O_p \) timely. Further-
more, the drip rate of BJG7 closely resembles the pattern of monthly precipitation (Fig. 6b), indicating that recharge response is consistently rapid during most of the rainfall events. Accordingly, the recharge mode of BJG7 can be inferred as follows. Firstly, there should be well-connected soil and epikarst zone to make the drip rate respond quickly to the monthly precipitation. Secondly, there should be a ‘overflow’ storage reservoir, with stable older water stored in it. Only when the water storage volume exceeds a certain threshold can the water in the reservoir infiltrate into the cave. For simplicity, the hypothetical karst water flow pathway of BJG7 is illustrated schematically in Fig. 7. During the wet season, the heavy rain can quickly fill the ‘overflow’ storage reservoir, and then the water stored in it, mixed with the new rainwater, can infiltrate into the lower reservoir. Meanwhile, heavy rain could infiltrate directly into the lower reservoir through fractures. Consequently, the drip rates could rise quickly as precipitation amounts increase (Fig. 6b), but the δ18O stays constant, with the value similar to the long-term isotope composition of precipitation stored in the overflow reservoir (Fig. 4b). Whereas, during the dry season, the rainfall is too low for the stored volume to exceed the outlet point of the ‘overflow’ reservoir, but the rain can still recharge the drips through the fracture connection to the lower reservoir. That explains the observation of δ18O following the pattern of δ18Op in the dry season when the drip rate is slow. The recharge mode is similar to the “intermittent response site” as observed by Tooth and Fairchild (2003).

For LF6, the pattern of δ18O variation seems similar to that of BJG7, with nearly constant and low values in the wet season but variable and high values in the dry season (Fig. 4c). However, their essential recharge modes may be different. For LF6, during the wet season, the mean δ18O value is ~7.3‰, nearly identical to the mean value of LF1 (~7.5‰) (Table 2) in the same cave and the coeval weighted mean δ18O value (~7.2‰) (Fig. 4c). This indicates that, during the wet season, LF6 is recharged mainly by the well-mixed stored water. Whereas, during the dry season, the mean value of δ18O is ~4.9‰, about 1.3‰ lighter than the weighted mean value of coeval rainwater (~3.6‰), but 2.3‰ higher than the weighted mean value of local rainwater (~7.2‰). This suggests that, during the dry season, LF6 is not mainly recharged by the coeval precipitation. Furthermore, the drip rate of LF6 is nearly constant at a very low value (average: 0.9 drip/minute) during the study period (Table 2), and there is no significant hydrological response to precipitation (Figs. 6c and 8). The δ18O value may be increased by evaporation inside the cave with low relatively humidity or air circulation (Ingraham et al., 1990; Caballero et al., 1996; Carrasco et al., 2006; Oster et al., 2012; Cuthbert et al., 2014b). In LF, the relative humidity shows seasonal variation, with high values (about 100%) during the wet season, but low values (less than 86%) during the dry season (Fig. 8). However, the other two sites, LF1 and LF5, not far from LF6 (Supplementary Fig. 1c), do not show heavier δ18O values in the dry season (Fig. 4c). The drip rate of LF1 is constant and much greater than that of LF6. While, for LF5, the drip rate shows seasonal variability, with high values in the wet season (greater than LF1) but low values in the dry season (similar or lower than LF6) (Figs. 6c and 8). Meanwhile, LF6 has a higher drip height of 4.5 m than that of LF5 (0.8 m) (Zeng et al., 2015), which may make the drip water undergo longer time dripping process from stalactite to collector. Therefore, for LF1 and LF5 the drip water could quickly drip into the collector for all or part of the year and experience less evaporation compared to LF6.

In general, since there are complicated recharge systems, the isotopic composition of the stalagmite under this kind of drip cannot be easily used as a climatic proxy.

6. CONCLUSIONS

Based on an approximately three-year (May-2011 to April-2014) monitoring data of eight caves in the MRC, the following conclusions can be drawn:

The monthly δ18Op values correlate negatively with MAT at all the sites except SH, although the statistical significance varies, and the correlation is opposite to that expected from the temperature effect in Rayleigh fractionation. Additionally, monthly δ18Op values are variably negatively correlated with MP at all the cave sites, but only three

![Fig. 8. Comparison between δ18Op, δ18Od, cave air relative humidity (RH) and drip rate of drip sites in LF. The blue bars denote the periods when the RH is low and δ18Od of LF6 is high. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)
sites are statistically significant at 95%. Therefore, neither the temperature effect nor the amount effect could account for all the variance of $\delta^{18}O_{p}$ in the MRC, and circulation effect may also be an important factor due to the various sources of water vapor.

About 82% of the thirty-four drip sites are static drips, for which, the $\delta^{18}O_{p}$ show a remarkable stability since the beginning of the monitoring, although the drip rates are not necessary constant. Thus, regardless of the site-specific discharge systems, there is a commonality among them: the drip water is a mixture of precipitation integrated over relatively long periods (more than three years). This result indicates that most of the $\delta^{18}O_{p}$ profiles mainly record the average of multi-year climatic signals, modulated by the seasonality of recharge and potential effects of evaporation.

About 12% of the thirty-four drip sites are seasonal drips, for which, the $\delta^{18}O_{p}$ values vary seasonally and some of them follow the trend of coeval $\delta^{18}O_{p}$. These drips are mainly recharged by the present-day precipitation through fractures, mixing with some stored water. Accordingly, the seasonal climatic signals embedded in the $\delta^{18}O_{p}$ could be partly transmitted to some of these drips and in turn to the stalagmites growing under them.

About 6% of the thirty-four drip sites are medium-variability drips, with constant and relative low $\delta^{18}O_{p}$ values in the wet season but variable and relatively high values in the dry season. The seasonal variability may result from flow switching in the karst or evaporation inside the cave.

In summary, to interpret the climatic signals of $\delta^{18}O_{p}$, the corresponding hydrological conditions of recharge should be considered, especially the residence time of the infiltrated water.

ACKNOWLEDGEMENTS

We are grateful to Dr. Sulan Nan for providing maps of Supplementary Fig. 3. We also thank students and faculties, too numerous to list, who joined us in field trips to the cave and provided assistance with sampling of rainwater and drip water; the administrative committees of the eight caves in this study for allowing us free access to the caves for observations and sampling. Finally, we are grateful to the journal editor, Prof. McDermott, F. and two anonymous reviewers for their insightful reviews and advices that greatly improved the manuscript.

This research was supported by the National Natural Science Foundation of China (Grant No. 41030103) and the CAS Strategic Priority Research Program (Grant No. XDA05080501).

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2016.03.037.

REFERENCES

Clemens S. C., Prell W. L. and Sun Y. (2010) Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer

Associate editor: F. McDermott