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Abstract The mid‐Pliocene (~3.3–3.0 Ma) was the most recent warm interval during which atmospheric
CO2 concentrations were similar to the present level of ~400 ppmv. Therefore, it is often regarded as an
analog for a near‐future climate scenario. To examine the behavior of the East Asian summer monsoon
(EASM) during the mid‐Pliocene warm period, the northern edge of the EASM, a sensitive indicator of the
advance and retreat of the summer monsoon rainbelt, was analyzed using the output of the Pliocene Model
Intercomparison Project Phase 1. The results show a ~150‐km‐northwestward migration of the northern
edge of the EASM during the mid‐Pliocene compared to the preindustrial period, which is consistent with
that derived from a comparison of geological records and modern observations. However, the geological
records indicate a greater east‐west climatic contrast during the Pliocene than at present, which requires
investigation in future modeling studies. The simulations also show a substantial increase in the large‐scale
land‐sea thermal contrast between the East Asian mainland and the equatorial western Pacific during the
interval of mid‐Pliocene warmth. This led to the intensification and westward extension of the western
Pacific subtropical high, causing a northwestward shift of the EASM and the resulting mitigation of drought
in northern China. We suggest that global warming will shift the EASM northwestward mainly via changes
in the position and intensity of the western Pacific subtropical high; this requires systematic studies in
the future based on meteorological observations and simulations.

1. Introduction

The northern edge of the East Asian summer monsoon (EASM) is defined as the northern limit of the
monsoon precipitation (Chen et al., 2018; Hu & Qian, 2007; Tang et al., 2007; Xu & Qian, 2003). It shifts
northward or southward with interannual fluctuations of the EASM and thus forms the northern marginal
zone of the EASM, which extends in a NE‐SW direction and represents a distinctive boundary zone of
monsoon expansion or contraction (Tang, Qian, et al., 2010; Zhu et al., 2018). At present, the northern
marginal zone of the summer monsoon is the wet‐dry transitional area in East Asia, as well as the
farming‐pastoral ecotone and the ecologically fragile zone (Qian et al., 2009; Yang et al., 2002).

Changes in the northern edge of the EASM have been a major research focus for decades, because it
sensitively records the advance and retreat of the summer monsoon rainbelt. The northern edge of the
EASM gradually migrated southward with decreasing summer monsoon intensity during the past few
decades (Hu & Qian, 2007; Li et al., 2010; Ma & Fu, 2003; Qian et al., 2009), which is attributed by some
researchers to global warming. In contrast, several other studies have predicted an intensification of the
EASM with global warming and thus a northward shift in the northern edge of EASM in the near future
(Kripalani et al., 2007; Yang, Ding, et al., 2015). Atmospheric CO2 concentrations have now reached over
400 ppmv; however, the atmosphere‐ocean system is still in a nonequilibrium state due to the large thermal
inertia of the ocean, hindering predictions and projections of the EASM. Clearly, changes in the northern
edge of EASM during warm climatic intervals in the geological past, during which greenhouse gases and
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climate reached an equilibrium state, can provide insight into the possible response of the monsoon system
to global warming and its mechanisms.

The mid‐Pliocene warm period (~3.3–3.0 Ma) is the most recent period of relatively warm and stable climate
in Earth's history, during which atmospheric CO2 concentrations were approximately 400–450 ppmv (Lunt
et al., 2012; Pagani et al., 2010) and global mean annual temperature was 1.9–3.6 °C warmer than today
(IPCC, 2013). This period is similar to today in terms of the continent‐ocean configuration and atmospheric
CO2 concentrations (Haywood et al., 2016) and has often been proposed as a climatic analog for the end of
the present century. The mid‐Pliocene is presumably representative of a long‐term environmental and cli-
mate equilibrium response to higher than preindustrial levels of CO2, while the preindustrial to modern cli-
mate trend is a transient surface climate response (Haywood, Ridgwell, et al., 2011). Therefore, differences in
imposed Pliocene vegetation and ice sheets compared to the modern/near future could explain any differ-
ence between simulated Pliocene and predicted future responses in the EASM as well as its northern edge.

Numerical experiments are a useful means of understanding past climates on regional and global scales.
Based on simulations of the mid‐Pliocene climate within the framework of the Pliocene Model
Intercomparison Project (PlioMIP), the large‐scale features of global and regional climate change have been
analyzed (Dowsett et al., 2013; Haywood et al., 2000; Jiang et al., 2005; Kamae et al., 2011; Koenig et al., 2015;
Li et al., 2015; Zhang et al., 2013). However, the characteristics of the mid‐Pliocene northern edge of EASM
have yet to be studied. Here we first examined the climatological fields derived from the experiments of
the 16 PlioMIP climate models and then selected 11 of them to comprehensively analyze the changes
of the northern edge of the EASM. Finally, we compare the simulations with geological records and address
the mechanisms for the migration of the northern edge of the EASM.

2. Data and Methods
2.1. PlioMIP Experimental Design

Two types of experiment were designed within the PlioMIP framework. Experiment 1 used atmosphere‐only
general circulation models (AGCMs), while experiment 2 used coupled atmosphere‐ocean general circula-
tion models (AOGCMs). In this study, the model results from seven AGCMs and nine AOGCMs in PlioMIP
(Table 1) were first examined, and then 11 models were selected to analyze the northern edge of the EASM.
Both experiments describe the model setup for preindustrial and mid‐Pliocene simulations. The boundary
conditions applied to all climate models of PlioMIP used the USGS Project known as PRISM3 (Pliocene
Research Interpretation and Synoptic Mapping), which has generated boundary conditions including

Table 1
Basic Information on the General Circulation Models in the PlioMIP

Model Type
Atmosphere
resolution

Boundary
conditions

Years for
analyzing References

CAM3.1 AGCM T42, L26 Alternate 30 Yan et al. (2012)
CAM4 AGCM T31, L26 Alternate 20 Zhang and Yan (2012)
HadAM3 AGCM 2.5° × 3.75°, L19 Preferred 30 Bragg et al. (2012)
ECHAM5 AGCM T31, L19 Preferred 30 Stepanek and Lohmann (2012)
LMDZ5A AGCM 1.9° × 3.75°, L39 Alternate 30 Contoux et al. (2012)
MIROC4m‐AGCM AGCM T42, L20 Preferred 30 Chan et al. (2011)
MIR‐CGCM2.3‐AGCM AGCM T42, L30 Alternate 50 Kamae and Ueda (2012)
FGOALS‐g2 AOGCM 1° × 1°, L30 Alternate 100 Zheng et al. (2013)
GISS‐E2‐R AOGCM 2° × 2.5°, L40 Preferred 30 Chandler et al. (2013)
HadCM3 AOGCM 2.5° × 3.75°, L19 Alternate 50 Bragg et al. (2012)
COSMOS AOGCM T31, L19 Preferred 30 Stepanek and Lohmann (2012)
IPSLCM5A AOGCM 1.9° × 3.75°, L39 Alternate 30 Contoux et al. (2012)
MIROC4m AOGCM T42, L20 Preferred 30 Chan et al. (2011)
MIR‐CGCM2.3 AOGCM T42, L30 Alternate 50 Kamae and Ueda (2012)
CCSM4 AOGCM 0.9° × 1.25°, L26 Alternate 30 Rosenbloom et al. (2013)
NorESM‐L AOGCM T31, L26 Alternate 100 Zhang et al. (2012)

Note. “Preferred” refers to a land/sea mask that has been entirely altered to meet the PlioMIP boundary conditions,
whereas “alternate” is where modeling groups have had to use more similar to modern land/sea mask.
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monthly sea surface temperatures (SSTs), sea‐ice distributions, vegetation cover, sea level, ice sheet extent,
and topography (Dowsett et al., 2010). AGCMs were forced with the prescribed mid‐Pliocene SSTs and sea
ice extents, while the SSTs and sea ice extents in AOGCMs were predicted dynamically by the models
(Haywood et al., 2016). In both experiments 1 and 2, the mid‐Pliocene atmospheric CO2 was set to
405 ppmv. All other trace gases were specified at preindustrial concentrations, and a modern orbital
configuration was used (Haywood, Dowsett, et al., 2011). Further details of the boundary conditions and
experimental design for the PlioMIP can be found in Haywood et al. (2010); Haywood, Dowsett, et al.
(2011); and Haywood et al. (2016) or at http://geology.er.usgs.gov/eespteam/prism/prism_pliomip.html.

2.2. Definition of the Northern Edge of the EASM

There are several approaches to measuring the northern edge of the EASM: for example, using the mean
pseudo‐equivalent potential temperature combined with precipitation and wind field (Hu & Qian, 2007),
using pentad‐average precipitation (Tao & Yi, 1999), and using normalized precipitation (Tang, Chen,
et al., 2010). However, these climatic parameters cannot be obtained directly from the PlioMIP output. In
this study, we adopt the northern boundary of the monsoon area as the northern edge of the EASM, follow-
ing the definition that the summer monsoon area is the region where the local summer minus winter pre-
cipitation rate exceeds 2 mm/day and the local summer precipitation exceeds 55% of annual precipitation
(Liu et al., 2009; Wang et al., 2012).

2.3. Evaluation of the PlioMIP Models

To evaluate the models' ability to simulate the northern edge of the EASM, we compared the results of mod-
ern climate reanalysis data with those from the preindustrial control simulation. The reanalysis data include
precipitation data (1981–2010; Xie & Arkin, 1997) provided by the U.S. Center for Climate Prediction
(CMAP) and ERA‐Interim monthly average temperature data (1979–2008) provided by the European
Meteorological Center (Berrisford et al., 2011). The spatial resolutions of CMAP precipitation and ERA‐
Interim temperature data are 2.5° × 2.5° and ~0.7° × 0.7°, respectively. To quantify the details of the northern
edge of the EASM, all model and reanalysis data were aggregated to a horizontal resolution of 0.5° latitude by
0.5° longitude using bilinear interpolation.

We calculated spatial correlation coefficients (SCCs), standard deviation, and centered root mean square
errors (RMSEs) for the surface air temperature (SAT) and precipitation between the preindustrial experi-
ments and the reanalysis data over East Asia. The results are presented as a Taylor diagram (Taylor, 2001;
Figure 1). The models show a better skill in simulating temperature than precipitation, as indicated by the
larger scatter of the precipitation statistics. The SCCs are greater than 0.85, and the RMSEs are less than

(a) (b)

Figure 1. Taylor diagrams showing normalized pattern statistics for temperature and precipitation in East Asia between
preindustrial experiments and modern climate reanalysis. (a) Red, dark, and blue represent summer, winter, and annual
temperature, respectively. (b) Red denotes the anomaly between summer and winter precipitation, and blue indicates
annual precipitation. The reference (REF) usually represents observations. The standard deviation of the modeled field is
the radial distance from the origin, and the RMSE is the distance to the point REF. Both are normalized by the observed
standard deviation. The azimuthal position gives the spatial correlation coefficient. The multimodel ensemble (MME)
means of the atmosphere‐only general circulation models (AGCMs), atmosphere‐ocean general circulation models
(AOGCMs), and all the models are also indicated.
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0.50 for the SAT (Figure 1a), whereas for the precipitation, the SCCs range from 0.30 to 0.95, and the RMSEs
of five models are much greater than 1 and those of the remaining 11 models are clustered between 0.5 and 1
(Figure 1b). As models with low RMSEs have a good simulation ability, 11 models (Figure 1b), with RMSEs
of precipitation less than 1, were selected in this study to analyze the northern edge of the EASM.

3. Results
3.1. Temperature and Precipitation Anomalies During the Mid‐Pliocene

The numerical simulations show that compared with the preindustrial period, the MME summer SAT in the
mid‐Pliocene was substantially warmer (approximately 4–5 °C) at northern high latitudes, while the low
latitude SAT increased by 0–2 °C. The MME summer SAT of the mid‐Pliocene was 2–4 °C warmer in the
East Asian mainland (Figure 2a), while the SSTs of the South China Sea and the equatorial western
Pacific were 1–2 °C higher in the mid‐Pliocene than in the preindustrial period (Figure 2b). Evidently, there
was an enhanced land‐sea thermal contrast of 1–2 °C between the East Asian mainland and the equatorial
western Pacific in the mid‐Pliocene. With respect to the preindustrial period, summer MME precipitation
increased in most areas of East Asia in the mid‐Pliocene (Figure 2c). Specifically, there was a significant
increase in precipitation in northern China (0.5–1.0 mm/day), whereas a slight increase or decrease in pre-
cipitation occurred in southern China.

3.2. The Northern Edge of the EASM in the Mid‐Pliocene

The northern edge of EASM was analyzed systematically, based on the previously mentioned definition. As
shown in Figure 3, the northern edge of the EASM generally exhibits a northwestward shift during the mid‐
Pliocene compared with the preindustrial period, although the amplitudes of the migration differ among
individual models. A large northwestward shift (~300–500 km) of the northern edge of the EASM was

(a) (b)

(c)

Figure 2. (a) Multimodel ensemble (MME) for summer mean surface air temperature (units: °C) differences between the mid‐Pliocene and the preindustrial per-
iod. (b) MME of the atmosphere‐ocean general circulation models for summer mean sea surface temperature (units: °C) differences between the mid‐Pliocene and
the preindustrial period. (c) MME for summer mean precipitation anomalies (units: mm/day, shading) between the mid‐Pliocene and the preindustrial period,
together with the preindustrial precipitation distribution (contours). Summer spans May‐September for the Northern Hemisphere and November‐March for the
Southern Hemisphere. The shaded dots indicate areas where over 70% of the models agree with the direction of the change, calculated following the method of Koh
and Brierley (2015).
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simulated by CAM4, FGOALS‐g2, MIROC4m (AGCM and AOGCM), and NorESM for the mid‐Pliocene,
while a small northwestward shift (~50–100 km) of the northern edge of the EASM is evident in the other
six models. The multimodel ensemble results for all the AGCMs and AOGCMs are similar, showing a
~150‐km‐northwestward migration of the northern edge of the EASM in the mid‐Pliocene.

The present northern edge of the EASM (Figure 3), characterized on the basis of CMAP precipitation data
(1981–2010), shows a northeast‐southwest trend similar to that in the preindustrial period, but its location
migrates significantly southeastward compared with the preindustrial period. This is related to the

Figure 3. The northern edge of the East Asian summer monsoon for the mid‐Pliocene (red lines), the preindustrial (green lines), and the present day (1981–2010,
black lines).
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southward displacement of the monsoon rainbelt observed during the last
few decades due to the weakening of the EASM since the 1970s (Chase
et al., 2003; Dai et al., 2012; Wang, 2001; Zhu et al., 2012). An additional
cause is the summer “wet biases” over northern China in most of the
coupled GCMs (Song & Zhou, 2014). These results generally demonstrate
the good ability of the models to simulate the northern edge of the EASM;
however, the ~150‐km distance estimate for the EASM shift remains to be
confirmed using high‐resolution regional climate models.

3.3. Data‐Model Comparison

The paleoclimates and paleoenvironments of the Pliocene have been stu-
died extensively using a variety of proxies, including paleontological indi-
cators such as fauna, sporopollen assemblages, and fossil wood (Han et al.,
1997; Li et al., 2004; Xie et al., 2012); geochemical proxies such as carbon
and oxygen isotopes and trace elements (Ding & Yang, 2000; Ding et al.,
2001; Jin & Li, 2003; Ma & Si, 2009); magnetic indices such as magnetic
susceptibility (He et al., 2013; Nie et al., 2014); and sedimentological indi-
cators such as grain size and soil formation (Ao et al., 2016; Ding et al.,
1999, 2001; Qiang et al., 2001; Yang & Ding, 2004; Yang et al., 2018). To
reduce uncertainties derived from multiple interpretations of various
paleoclimatic proxies, palaeoclimatic records based on paleontological

indicators (sporopollen, plant macrofossils, ostracoda, and fauna), which are robust measures of palaeomon-
soon intensity, were assembled. Paleontological data from 43 sites throughout China (Figure 4) were com-
piled to examine the spatial climatic pattern for the mid‐Pliocene. The results (Table 2) show that 14 sites
were dry and 29 sites were humid, with humid conditions in southeastern China and dry conditions in
northwestern China during the mid‐Pliocene—a pattern like that of the present. At present, the 500‐mm iso-
line of annual precipitation marks the boundary between humid‐subhumid and arid‐semiarid areas
(Figure 4; Sun & Wang, 2005). Clearly, the location of the wet‐dry boundary, that is, the northern edge of
the EASM, moved significantly northwestward during the mid‐Pliocene relative to the present, especially
over the region to the east of 110°E and to the west of 95°E.

The northwestward shift in the northern edge of the EASM captured by themodels (Figure 3) is roughly con-
sistent with that derived from the comparison of geological records and modern climatic data (Figure 4).
However, there is a difference in the details between the simulations and reconstructions. The geological
records show a greater magnitude of the EASM shift at the northeastern and southwestern ends of the edge,
while the simulations display a roughly consistent northwestward shift of the edge. It follows that except for
the north‐south climatic contrast, an enhanced east‐west contrast is distinct in the Pliocene geological
records. This discrepancy may be related to (1) physical weaknesses in the models, such as the insufficient
sensitivity to external perturbations, underestimation of internal variability, and failure to represent impor-
tant feedbacks (Braconnot et al., 2012; Jiang et al., 2014), and (2) the proxy data compilation, which repre-
sents an amalgam of time snapshots in which the orbital configuration may have been different from that
used in the PlioMIP model simulations. Thus, data‐model comparisons confined to a very narrow time win-
dow of the mid‐Pliocene are required in future studies (Haywood et al., 2013).

4. Mechanism for the Migration of the Northern Edge of the EASM

The modern EASM consists of tropical and subtropical monsoons (Ding & Chan, 2005). The northern edge
of the EASM is substantially affected by the East Asian subtropical summer monsoon (Tang et al., 2008).
Since the poleward flow along the western flank of the western Pacific subtropical high (WPSH) is a major
component of the subtropical summer monsoon, the advance and retreat of the East Asian subtropical mon-
soon are closely related to the activity of the WPSH (Huang & Tang, 1987; Lu & Dong, 2001). Meteorological
observations have shown that the northward shift and westward extension of the WPSH promote the north-
westward displacement of the rainbelt and the precipitation in northern China increases accordingly
(Huang et al., 2015; Tao & Wei, 2006).

Figure 4. Paleoclimatic records for the mid‐Pliocene. Numbers refer to sites
listed in Table 2. The solid line represents 500‐mm isoline of annual
precipitation, which is the present boundary between humid‐subhumid and
arid‐semiarid areas, while the dotted line indicates the dry‐humid boundary
in the Pliocene.
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The MME summer wind anomaly field at 850 hPa between the mid‐Pliocene and the preindustrial period
was calculated (Figures 5a and 5b). Evidently, there is an anomalous anticyclonic circulation across the
region from 105°E to the western Pacific, indicating a significantly enhanced WPSH in the mid‐Pliocene.
Moreover, the anomalous southeasterly wind associated with the WPSH extends northward up to 30°N,
implying an intensified southeasterly wind in this area. Obviously, the EASM was intensified during the
mid‐Pliocene, which well explains the northwestward migration of its northern edge.

The position of the WPSH is conventionally measured by the geopotential height at 500 hPa (Ding, 1994;
Zhou & Li, 2002). We adopted the 5,843‐gpm contour line of the 500‐hPa geopotential height to describe
the position of the WPSH (Gong & Ho, 2002; Nitta & Hu, 1996; Figure 5c) and found a remarkable

Table 2
Localities and Data Used in the Mid‐Pliocene Paleoclimatic Reconstruction

No. Site Location
Reconstructed

climate Age (Ma) Proxy data References

1 Shijiawan 34.40°N, 109.60°E Dry 3.0–2.7 Pollen and elephant fossil Han et al. (1997)
2 Xifeng 35.88°N, 107.97°E Dry 3.4–2.4 Pollen; mollusk Wang et al. (2006); Wu et al. (2006)
3 Xifeng 35.70°N, 107.60°E Dry 4.0–3.0 C4 vegetation expansion Jiang et al. (2002)
4 Yahu 37.80°N, 94.50°E Dry 3.6–2.6 Pollen Fang et al. (2008); Wu et al. (2011)
5 Guge 31.47°N, 79.74°E Dry 3.2–2.9 Pollen Yu et al. (2007)
6 Gonghe Basin 36.23°N, 100.68°E Dry 3.15–3.05 Ostracods Zhao (2013)
7 Sanju 37.18°N, 78.48°E Dry 5.3–2.58 Pollen Sun et al. (2008)
8 Dushanzi 44.30°N, 84.93°E Dry 3.2–2.58 Pollen Sun et al. (2007)
9 Tianzhu‐Gansu 36.95°N, 103.28°E Dry Mid‐Pliocene Micromammalia Zhen (1982)
10 Sikouzi 36.26°N, 105.98°E Dry 3.3–3.0 Pollen Jiang and Ding (2008)
11 Jiuxi Basin 39.78°N, 97.53°E Dry 3.6–3.3 Pollen Ma, Fang, et al. (2005)
12 Qaidam Basin 37.80°N, 94.80°E Dry 3.3–3.0 Pollen Wu et al. (2011)
13 Dongwan 34.97°N, 105.78°E Dry 4.55–3.5 mollusk Li et al. (2014); Liu et al. (2011)
14 Renjiagou 34.98°N, 107.56°E Dry 3.5–3.4 Mammalia Zhang and Gong (2003)
15 Zanda Basin 31.67°N, 79.75°E Wet 3.5–2.9 Gastropod and Pollen Zhu et al. (2007)
16 Zanda Basin 31.00°N, 80.00°E Wet 4–3.1 Mammalian Wang, Li, et al. (2013);

Wang, Xu, et al. (2013)
17 Qaidam Basin 38.38°N, 91.75°E Wet 3.1–2.6 Pollen Cai et al. (2012)
18 Lingtai Leijiahe 35.07°N, 107.73°E Wet 5.8–3.4 Pollen Wu (2001)
19 Chaona 35.12°N, 107.20°E Wet 3–2.6 Pollen Ma, Wu, et al. (2005); Nie et al. (2014);

Wu et al. (2007)
20 Baode 39.02°N, 111.16°E Wet 3.05–2.8 Pollen Li et al. (2011)
21 Yushe Basin 36.97°N, 112.83°E Wet 3.5–2.3 Pollen Liu et al. (2002); Shi et al. (1993)
22 Zhangcun 37.80°N, 114.20°E Wet 4.4–2.3 Pollen Li et al. (2004)
23 Taigu 38.00°N, 113.60°E Wet 4.0–3.0 Pollen Li et al. (2004)
24 Hujiachi 37.50°N, 115.50°E Wet 3.5–3.11 Pollen Bi et al. (2012)
25 Tianzhu‐Beijing 40.10°N, 116.54°E Wet 3.58–2.55 Pollen Yao et al. (2007)
26 Tangshan 39.54°N, 118.17°E Wet 3.58–3 Pollen Hu et al. (2014)
27 Zibo 36.81°N, 118.06°E Wet 3–2.9 Pollen Tan et al. (2000)
28 Qianan 44.78°N, 123.73°E Wet 3.3–2.45 Pollen Jia et al. (1989); Xia and Wang (1987)
29 Hujiacun 29.60°N, 120.73°E Wet 3.5–3.0 Alseodaphne Hu et al. (2007)
30 Huaibei Plain 33.33°N, 117.33°E Wet 4.5–2.5 Pollen Yu and Huang (1993)
31 Tuantian 24.68°N, 98.62°E Wet 3.3–2.3 Carpinus Miofangiana;

Megaflora
Dai et al. (2009); Wu et al. (2009);
Xie et al. (2012)

32 Wanbaoshilin 25.86°N, 101.81°E Wet 3.4–2.5 Megaflora Cheng et al. (2005)
33 Hutaotantulin 25.84°N, 101.76°E Wet 3.4–2.5 Megaflora Cheng et al. (2005)
34 Yuanmou Basin 25.50°N, 102.00°E Wet 3.4–2.5 Megaflora; Pollen Liu et al. (2002); Yao et al. (2012)
35 Weihe 34.52°N, 109.50°E Wet 3.04–2.91 Pollen Tong et al. (1989)
36 Huanghua 38.40°N, 117.33°E Wet 3.2–3.11 Pollen Fan et al. (2009)
37 Tianjin 39.07°N, 117.63°E Wet 3.61–2.8 Pollen Yang, Qin, et al. (2015)
38 Daodi 40.15°N, 114.66°E Wet 3.7–2.6 Mammalia Li et al. (2008)
39 Nihewan 1 40.22°N, 114.64°E Wet 2.92–2.82 Pollen Ding et al. (2018)
40 Nihewan 2 40.21°N, 114.64°E Wet 3.3–3.06 Pollen Li (2018)
41 Tianshui 34.39°N, 105.71°E Wet 3.2–2.6 Pollen Liu (2016)
42 Changjiang Delta 31.34°N, 121.84°E Wet 3.3–2.7 Pollen Xie (2017)
43 Gaotege 43.50°N, 115.44°E Wet 4.0–3.6 Rodentia Li et al. (2003); Wang (2013)
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difference in the position and extent of the WPSH between the mid‐Pliocene and the preindustrial
period. Compared with the preindustrial period, the WPSH in the mid‐Pliocene extended significantly
westward, which favored the penetration of the southeasterly wind from the western flank of the WPSH
into the interior of the Asian continent. Therefore, the westward extension of the WPSH, together with
the strengthening of its intensity, promoted the northwestward advance of the EASM, leading to a deeper
penetration of the rainbelt into northern China during the Pliocene warmth. This is inconsistent with
the prediction of Held and Soden (2006) that Earth's dry regions will become drier and its wet regions
wetter, with global warming. However, a recent study (Allan, 2014) has demonstrated that the pattern
suggested by Held and Soden (2006) would be invalid if global warming induced shifts in atmospheric
circulation patterns.

Our results suggest a mechanism for the EASM variations in the context of the Pliocene warmth: That is, the
enhanced land‐sea thermal contrast between the East Asian mainland and the equatorial western Pacific
resulted in an increased pressure difference between the land and sea (Chen et al., 2001), and hence a west-
ward extension and strengthening of theWPSH, which in turn led to a northwestward shift in the north edge
of the EASM. As the Tibetan Plateau topography generally decreased in the mid‐Pliocene compared to the
present day (Dowsett et al., 2010; Zhang et al., 2013), a stronger EASM intensity in future global warming
scenarios, compared to the mid‐Pliocene, is expected due to the influence of the plateau on orographically
related thermal forcing of the EASM (Wu et al., 2012). Therefore, we propose that if global warming con-
tinues, the WPSH will extend westward, causing a northwestward shift in the EASM rainbelt and the result-
ing mitigation of droughts in northern China. It should be noted that all simulations used in this study were
undertaken with global climate models and high‐resolution regional climate models are urgently needed to
investigate the northern edge of the EASM in greater detail.

5. Conclusions

The multimodel ensemble results of the PlioMIP models show that the summer SAT of the mid‐Pliocene
increased by approximately 2–4 °C in the East Asian mainland and by approximately 1 °C in the equatorial
western Pacific, which significantly enhanced the east‐west land‐sea thermal contrast. The northern edge of
the EASM featured a northwestward migration of ~150 km in the mid‐Pliocene relative to the preindustrial
period, which promoted the northwestward displacement of the rainbelt and an increase of approximately
0.5–1 mm/day of summer mean precipitation in northern China.

(a) (b)

(c)

Figure 5. (a) Summer wind field (m/s) at 850 hPa for the preindustrial period. (b) Summer wind field (m/s) anomaly between the mid‐Pliocene and the preindus-
trial. The shaded dots indicate areas where over 70% of the models agree with the direction of the change, calculated following the method of Koh and Brierley
(2015). Note the good agreement across the ensemble in the western flank of the western Pacific subtropical high. (c) The 5,843‐gpm contour line of 500‐hPa
geopotential height for the preindustrial period (green) and the mid‐Pliocene (red), together with the multimodel ensemble for summer mean precipitation
anomalies (units: mm/day, shading) between the mid‐Pliocene and the preindustrial period.
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A data‐model comparison shows that the northwestward shift of the northern edge of the EASM simulated
by the models is consistent with that derived from a comparison of geological records and modern climatic
data. However, the geological records show a greater magnitude of the EASM shift at the northeastern and
southwestern ends of the edge, compared to the simulations. This indicates that except for the north‐south
climatic contrast, an enhanced east‐west contrast is evident in Pliocene geological records, which needs to be
addressed in future modeling studies.

The simulations show that compared with the preindustrial period, the position of the WPSH in the mid‐
Pliocene was extended substantially westward, and its intensity increased, favoring the inland penetration
of the southeasterly winds from the western flank of the WPSH. This induced the northwestward shift of
the mid‐Pliocene northern edge of the EASM. Therefore, we suggest that future global warming may lead
to an intensification and westward extension of the WPSH, thereby intensifying the EASM and mitigating
droughts in northern China.
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