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A B S T R A C T

We collated existing data for the Eocene Langshan mafic rocks (Eocene mafic rocks) and the Miocene potassi-
c–ultrapotassic mafic rocks (Miocene mafic rocks) in southern Tibet to investigate the tectonic transition from
Neo-Tethyan oceanic crust subduction to Indian continental crust subduction. The Eocene mafic rocks have high
Na2O contents (K2O/Na2O=0.03–0.2) and show OIB-like trace element patterns (e.g., positive Nb and Ta
anomalies) and depleted radiogenic Sr–Nd isotope compositions (87Sr/86Sr of apatite= 0.7031, εNd(t) =+5.1
to +6.1). In contrast, the Miocene mafic rocks have high K2O contents (K2O/Na2O=1.9–8.5) and exhibit arc-
like trace element patterns (enrichment in LILEs and depletion in HFSEs) and enriched radiogenic Sr–Nd isotope
compositions (87Sr/86Sr= 0.7115–0.7362, εNd(t) =−16 to −12.4). The mantle source for the Eocene mafic
rocks was generated by reactions between asthenospheric mantle wedge and felsic melts from subducted Neo-
Tethyan oceanic crust (outside the field of rutile stability). In contrast, the mantle source of the Miocene mafic
rocks was generated by reactions between asthenospheric (or lithospheric) mantle wedge and felsic melts from
subducted Indian continental crust. Taking into account the regional tectonic evolution, we propose that break-
off of the Neo-Tethyan oceanic slab and roll-back and/or break-off of the Indian continental slab were the most
likely geodynamic mechanisms that led to the production of the Eocene and Miocene mafic rocks, respectively.
Therefore, the transition from the Eocene to Miocene mafic rocks in southern Tibet provides an opportunity to
understand the tectonic transition from Neo-Tethyan oceanic to Indian continental crust subduction.

1. Introduction

The subduction of continental crust in continental collisional oro-
gens follows the subduction of oceanic crust to mantle depths, closure
of the oceanic basin, and eventual continent–continent collision (e.g.,
Ernst, 2005; Castro et al., 2013; Gerya, 2014; Dash et al., 2015). These
sequential processes are significant not only for high-pressure (HP) to
ultrahigh-pressure (UHP) metamorphism of subducted crustal rocks
(e.g., Chopin, 2003; Ernst and Liou, 2008; Zheng et al., 2012) but also
for the recycling of crustal materials into the deep mantle (e.g., Zindler
and Hart, 1986; Willbold and Stracke, 2010; Zheng, 2012; Zhao et al.,
2013). In an orogen formed by continent–continent collision, the sub-
duction of oceanic crust would have predated the subduction of con-
tinental crust, and because oceanic crust subjected to eclogite-facies
metamorphism has a high density, it can pull the continental crust into

the mantle where it experiences UHP metamorphism (Forsyth and
Uyeda, 1975). Thus, in this scenario, both oceanic and continental
crustal materials would be recycled into the mantle during con-
tinent–continent collision. It is assumed that oceanic crust undergoes
metamorphic dehydration during subduction and that aqueous fluids
derived from the subducted oceanic crust alter the peridotite of the
overlying mantle wedge, thus generating the mantle source for oceanic
arc basalts (e.g., Kelemen et al., 2003; Schmidt and Poli, 2003; Spandler
and Pirard, 2013). In this process, the residual oceanic crust is sub-
ducted farther into the deep mantle to provide the mantle source for
intraplate oceanic island basalts (OIBs), which are enriched in high-
field-strength elements (e.g., Nb and Ta) and have depleted Sr–Nd
isotopic values (Hofmann and White, 1982; Hofmann, 1997; Stracke
et al., 2003; Chauvel et al., 2008). The subducted continental crust may
become dehydrated and partially melted at depths of 80–130 km in a
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continental subduction zone (e.g., Zhang et al., 2008; Chen et al.,
2013a, 2013b; Hermann et al., 2013). Thus, the fluids or melts derived
from the subducted continental crust would also metasomatize the
peridotite of the mantle wedge that overlies the continental slab (Zheng
et al., 2012). An enriched mantle (ultramafic metasomatite), generated
by reactions between mantle peridotite and the hydrous felsic melts
derived from the partial melting of the deeply subducted continental
crust, provides a likely source of the post-collisional potassic–ul-
trapotassic mafic rocks that are found in continent–continent collisional
orogens, and these mafic rocks exhibit arc-like trace element patterns
and enriched Sr–Nd isotope compositions (Prelević et al., 2008, 2013;
Guo et al., 2013, 2015; Zhao et al., 2013, 2015). The existence of two
types of crust–mantle interaction (i.e., oceanic crust–mantle and con-
tinental crust–mantle) during continent–continent collision means that
the geochemical transition from OIB-like basalts to post-collisional
potassic–ultrapotassic mafic rocks could provide a window into the
processes involved during these two types of slab–mantle interaction.

The Tibetan Plateau is an ideal location to investigate processes
associated with continent–continent collision (Allégre et al., 1984;
Molnar et al., 1993). For example, southern Tibet records the subduc-
tion of Neo-Tethyan oceanic lithosphere, the subsequent collision of the
Indian and Asian continents, and subduction of the India continental
lithosphere (e.g., Chung et al., 2005). However, it is commonly difficult
to identify the processes associated with the transition from the sub-
duction of the Neo-Tethyan oceanic crust to the subduction of the In-
dian continent during the evolution of this orogen (Chung et al., 2005
and references therein). Recently, the Eocene (∼45Ma) Langshan
mafic rocks (gabbros) have been discovered in the Gyangze region of
southern Tibet and have been shown to have clear OIB-like character-
istics (Ji et al., 2016). Unlike these OIB-like magmatic rocks, which are
of limited extent in southern Tibet, the Miocene (23–8Ma) post-colli-
sional potassic–ultrapotassic mafic rocks are widely distributed within
the Lhasa Block of southern Tibet (Turner et al., 1996; Miller et al.,
1999; Ding et al., 2003; Williams et al., 2004; Zhao et al., 2009).

In this study, we collated existing data on the Langshan mafic rocks
(gabbros) (herein, Eocene mafic rocks) and the Miocene (23–8Ma)
Xuruco Lake–Dangre Yongcuo Lake (XDY) potassic–ultrapotassic mafic
rocks (herein, Miocene mafic rocks) in southern Tibet to investigate (1)
the mantle source of both group of rocks and (2) whether the transition
from Eocene to Miocene mafic rocks records the tectonic evolution from
subduction of Neo-Tethyan oceanic crust to subduction of Indian con-
tinental crust.

2. Geology of the study area

The Tibetan Plateau comprises the Songpan–Gangzi, Qiangtang,
Lhasa, and Himalaya blocks from north to south. The Lhasa block is
bounded by the Bangong–Nujiang suture zone (BNSZ) to the north and
the Indus–Yarlung Zangbo suture zone (IYZSZ) to the south (Fig. 1a).
The BNSZ formed from the Middle Jurassic to the Early Cretaceous (Yin
and Harrison, 2000; Kapp et al., 2007; Zhu et al., 2011, 2013, 2016; Pan
et al., 2012; Zhang et al., 2012; Fan et al., 2014) and the IYZSZ formed
from the Late Cretaceous to the early Paleogene (Dewey et al., 1988;
Klootwijk et al., 1992; Tapponnier et al., 2001; Leech et al., 2005;
Royden et al., 2008; Najman et al., 2010; Ma et al., 2014; W. Huang
et al., 2015). The Lhasa terrane has been subdivided into southern,
central, and northern subterranes, separated by the Luobadui–Milashan
Fault and Shiquan River–Nam Tso Mélange Zone (Fig. 1a; Zhu et al.,
2011, 2013). The Himalaya block comprises three main units: the
Tethyan Himalaya, the High Himalaya, and the Lesser Himalaya, se-
parated by the South Tibet detachment system and the Main Central
thrust (Fig. 1b; Yin and Harrison, 2000; Yin, 2006).

The Cenozoic magmatic rocks in southern Tibet (Lhasa and
Himalaya blocks) consist mainly of the Linzizong volcanics, Miocene
(18–12Ma) adakites, post-collisional potassic–ultrapotassic mafic rocks
(23–8Ma), and Oligocene–Miocene (30–10Ma) leucogranites along

with minor middle Eocene (46–42Ma) granites (Mo et al., 2007, 2008;
Zhao et al., 2009; Guo et al., 2013; Wu et al., 2015; Liu et al., 2016).
The studied Eocene mafic rocks are located in the northeast of Gyangze
in the eastern Tethyan Himalaya. These rocks intrude the Late Cretac-
eous to early Tertiary Zongzhuo Formation, which consists mainly of
sandstone, siltstone, and shale (Fig. 1c; Ji et al., 2016). The studied
Miocene mafic rocks are located within the XDY rift, which contains
lava flows, plugs, and dykes, forming a N–S-trending, 130-km-long,
magmatic belt extending from the Garwa volcanic field in the north,
through the Yaqian, Mibale, and Yiqian volcanic fields, to the Chazi
volcanic field in the south (Fig. 1d; Guo et al., 2013).

3. Magma sources

The data used in this study for the Eocene mafic rocks were obtained
from Ji et al. (2016), and the data for the Miocene mafic rocks were
obtained from Liao et al. (2002), Ding et al. (2003, 2006), Gao et al.
(2007), Zhao et al. (2009), Guo et al. (2013). To exclude crustal con-
tamination and obvious fractional crystallization, we used only those
samples with MgO > 6.5 wt%. Details regarding data selection are
given in Supplementary text 1. The ages and geochemistry of the stu-
died rocks are presented in Supplementary Table 1.

The Eocene mafic rocks (MgO=7.2–10.4 wt%) have high Na2O
contents (Na2O=3.2–4.5 wt%; K2O/Na2O=0.03–0.2, Fig. 2a and b).
These rocks are enriched in LREEs with positive Nb–Ta anomalies
(Fig. 3a and b) and have depleted Sr–Nd isotopic compositions
(87Sr/86Sr(i) for apatite= 0.7031, εNd(t) =+5.1 to +6.1) (Fig. 4;
Supplement Table 1), resembling OIB-like magmas. Previous re-
searchers have proposed that the likely mantle sources of OIBs are li-
thospheric mantle with amphibole-bearing metasomatic veins, asthe-
nospheric mantle, or a mantle plume (White and Hofmann, 1982;
Hofmann, 1997; Niu and O’Hara, 2003; Pilet et al., 2008; Willbold and
Stracke, 2010; Stracke, 2012). According to the model of recycled li-
thospheric mantle with amphibole-bearing metasomatic veins (Niu and
O’Hara, 2003; Pilet et al., 2008), the high Nb–Ta values are inherited
from Nb-rich minerals in the veins. Moreover, the Nb-rich minerals
could also host Zr and Hf, thereby yielding positive Zr and Hf anoma-
lies, which are not observed for the Eocene mafic rocks in a primitive-
mantle-normalized incompatible-trace-element spidergram (Fig. 3b).
The Rongniduo (central Lhasa subterrane) Paleocene (∼64Ma) pseu-
doleucite phonolitic rocks may represent metasomatized lithospheric
mantle, but these rocks have more enriched Sr–Nd isotopic composi-
tions (87Sr/86Sr(i) = 0.7064–0.7062; εNd(t) =−1.5 to +0.4; Qi et al.,
2018) than the Eocene mafic rocks (87Sr/86Sr(i) of apatite= 0.7031,
εNd(t) =+5.1 to +6.1, Fig. 4). Furthermore, the absence of a large
igneous province (LIP) and the low calculated mantle potential tem-
perature (Tp, 1400 °C; Ji et al., 2016) beneath southern Tibet argue
against the presence of a mantle plume in the area. Thus, the litho-
spheric mantle and mantle plume models cannot explain the source of
the Eocene mafic rocks.

It is probable, therefore, that the Eocene mafic rocks originated
from the asthenospheric mantle. However, decompressional melting of
normal asthenospheric mantle would have produced mid-ocean-ridge
basalts (MORBs), which are characterized typically by depletion in
melt-mobile incompatible trace elements such as LILEs and LREEs, and
pertinent radiogenic isotopes (e.g., Salters and Stracke, 2004; Workman
and Hart, 2005). In contrast, the Eocene mafic rocks are generally en-
riched in melt-mobile incompatible trace elements (e.g., LREEs), and
they are not depleted in HFSEs (Fig. 3a and b). Such geochemical fea-
tures are similar to those of OIBs but differ significantly from those of
normal MORB. This difference indicates that normal asthenospheric
mantle cannot have served directly as the source of the Eocene mafic
rocks. Nevertheless, recycled oceanic crust, with or without sediments,
is considered by many workers to be a probable end-member compo-
nent in the mantle source of OIBs (e.g., White and Hofmann, 1982;
Hofmann, 1997; Chauvel et al., 2008; Stracke, 2012). We suggest that
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the other component in the mantle source of the Eocene mafic rocks
was oceanic crust, based on the following considerations. Firstly, the
Eocene mafic rocks with high (Ta/U)N (1.4–1.7) and (Nb/Th)N
(1.4–1.7) values indicate a contribution from subducted oceanic crust in
their mantle source (Fig. 5a; Supplementary Table 1). As slab dehy-
dration occurs during the subduction of oceanic crust, water-soluble
elements (e.g., Th, U, Ba, Rb, Cs, and Sr) are supplied to the arc
magmas, whereas HFSEs (i.e., Nb and Ta) remain in the residual
oceanic crust (Porter and White, 2009). The involvement of such re-
sidual oceanic crust with (Ta/U)N > 1 and (Nb/Th)N > 1 in the
mantle source can explain the excess Nb and Ta in both E-MORBs and
OIBs (Niu and Batiza, 1997). Secondly, during the subduction of
oceanic crust in the rutile stability field, the aqueous solutions that are
first released from the subducted oceanic crust are commonly enriched
in fluid-mobile incompatible trace elements such as LILEs, LREEs, and
Pb, but depleted in Nb, Ta, and Ti. Fluid-fluxed mantle wedge perido-
tites are generated above the subducted slab, and their partial melting
produces oceanic arc basalts (OABs) (Kelemen et al., 2003; Schmidt and
Poli, 2003). Consequently, the OABs are characterized by arc-like trace
element patterns, with low Nb/U and TiO2/Al2O3 values relative to
MORB. However, compared with OABs, the Eocene mafic rocks have
high Nb/U (47–57) and TiO2/Al2O3 (0.20–0.24) ratios, which indicate
that their mantle source contained a contribution from recycled oceanic
crust with the breakdown of rutile (Fig. 5b; Supplementary Table 1).
Thirdly, on a primitive-mantle-normalized variation diagram (Fig. 3b),
the Eocene mafic rocks have positive Nb and Ta anomalies and are
depleted in strongly incompatible elements (Rb, Ba, Th, and U). The
geochemical characteristics of the Eocene mafic rocks are consistent
with those of HIMU-type OIBs, which are usually the product of a
mantle source containing recycled dehydrated oceanic crust (e.g.,
Stracke et al., 2005). The Eocene mafic rocks have relatively depleted
Sr–Nd isotopic compositions (87Sr/86Sr(i) of apatite= 0.7031,

εNd(t) =+5.1 to +6.1), which requires the recycled oceanic crust in
their mantle source to be relatively young. The Eocene mafic rocks are
located close to the IYZSZ (Fig. 1c), which marks the closure of the Neo-
Tethys (e.g., Yin and Harrison, 2000). Therefore, the recycled compo-
nent that was involved in the mantle source of the Eocene mafic rocks
was probably the subducted Neo-Tethyan oceanic crust. We therefore
propose that the mantle source of the Eocene mafic rocks was asthe-
nospheric mantle wedge peridotite with recycled Neo-Tethyan oceanic
crust.

The Miocene mafic rocks have high MgO (6.6–10.8 wt%) and K2O
(4.5–9.9 wt%; K2O/Na2O=1.9–8.5) values (Fig. 2a and b; Supple-
mentary Table 1). These rocks are highly enriched in LREEs and LILEs,
significant depleted in Nb and Ta (Fig. 3a and b), and have extremely
enriched Sr–Nd isotopic compositions (87Sr/86Sr(i) = 0.7115–0.7362,
εNd(t) =−16 to −12.4) (Fig. 4; Supplementary Table 1). The arc-like
trace element patterns and enriched Sr–Nd isotope compositions of
these potassic–ultrapotassic mafic rocks indicate that they originated
from an enriched mantle source, and the enrichment has been ex-
plained as either due to (1) an ancient (Mesoproterozoic) metasomatic
event (Turner et al.,1996; Miller et al., 1999; Williams et al., 2004), or
(2) source contamination during the more recent subduction of Neo-
Tethyan oceanic crust or Indian continental crust (e.g., Ding et al.,
2003; Gao et al., 2007; Guo et al., 2013). With regard to the first pos-
sibility, the inference of an ancient mantle source is based mainly on the
Proterozoic Nd (0.9–1.3 Ga) and older Pb (2.2–3.5 Ga) model ages for
the potassic–ultrapotassic mafic rocks (e.g., Turner et al., 1996; Miller
et al., 1999; Williams et al., 2004). However, an ancient enriched
mantle remained chemically isolated and physically intact beneath
Tibet throughout the Phanerozoic, and it is unlikely to have been in-
volved in the complex Phanerozoic tectonic and magmatic evolution of
Tibet (e.g., Ding et al., 2003). With regard to the second possibility,
Prelević et al. (2008) collated isotopic data for post-collisional mafic

Fig. 1. (a) Tectonic outline of the Tibetan Plateau showing the study area (after Zhu et al., 2011). (b) Geological map of southern Tibet (after Chung et al., 2009),
with Cenozoic magmatism after Ma et al. (2017a,b). JSSZ= Jinsha Suture Zone; BNSZ=Bangong–Nujiang Suture Zone; SNMZ=Shiquanhe–Nam Tso Mélange
Zone; LMF=Luobadui–Milashan Fault; IYZSZ= Indus–Yarlung Zangbo Suture Zone. NL=Northern Lhasa subterrane; CL=Central Lhasa subterrane;
SL= Southern Lhasa subterrane; MBT=Main Boundary Thrust; MCT=Main Central Thrust; STDS= South Tibet Detachment System. (c) Geological map of the
Gyangze area, southern Tibet (after Ji et al., 2016). (d) Geological map showing the distribution of post-collisional potassic–ultrapotassic mafic rocks in the XDY rift
region (after Guo et al., 2013).
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lavas in the Mediterranean area and the Alpine–Himalayan belt and
suggested that the enriched isotope signatures in the mantle source
were due to the involvement of recent subducted sediments rather than
an ancient enriched mantle. We therefore favor the second possibility
that the mantle source of the Miocene mafic rocks was enriched during
the recent subduction events.

However, it has been argued that prior to enrichment, the mantle
source of the Miocene mafic rocks was either asthenospheric (Gao et al.,
2007; Guo et al., 2013, 2015; Cheng and Guo, 2017; Hao et al., 2018) or
lithospheric mantle (Ding et al., 2003; Zhao et al., 2009; Liu et al.,
2014, 2015; Huang et al., 2015). Unfortunately, no mantle xenoliths
were brought to the surface by the lavas during the Neo-Tethyan
oceanic subduction, so the evolution of the lithospheric mantle beneath
southern Tibet remains enigmatic. As the lithospheric mantle wedge
beneath southern Tibet, represented by the 94Ma Zhengga gabbros,
had already been enriched during the Neo-Tethyan oceanic subduction
but retained depleted isotopic values (87Sr/86Sr(i) = 0.7043–0.7048,
εNd(t) =+1.7 to +4.1, εHf(t) =+6.5 to +11.1; Fig. 4; Ma et al.,

2013a), it is difficult, and beyond the aim of this paper, to identify
whether the mantle source of the Miocene mafic rocks, prior to en-
richment, was asthenospheric or lithospheric mantle wedge beneath

Fig. 2. (a) Na2O+K2O (wt.%) versus SiO2 (wt.%) diagram for the Eocene and
Miocene mafic rocks; classification boundaries are from Le Bas et al. (1986).
Rock types are as follows: B, basalt; S1, trachybasalt; S2, basaltic trachyande-
site; S3, trachyandesite; T, trachyte; U1, tephrite; U2, phonotephrite; U3, te-
phriphonolite; O1, basaltic andesite; O2, andesite; and O3, dacite. (b) K2O (wt.
%) versus Na2O (wt.%) diagram for the Eocene and Miocene mafic rocks. The
classification of ultrapotassic, potassic, and sodic rocks in K2O/Na2O compo-
sitional space follows Foley et al. (1987). The data for the Eocene mafic rocks
are from Ji et al. (2016); data for the Miocene mafic rocks are from Liao et al.
(2002), Ding et al. (2003, 2006), Gao et al. (2007), Zhao et al. (2009), and Guo
et al. (2013).

Fig. 3. (a) Chondrite-normalized REE patterns, and (b) primitive-mantle-nor-
malized incompatible element diagrams for the Eocene and Miocene mafic
rocks. Normalizing values are from Sun and McDonough (1989). Data sources
are as for Fig. 2.

Fig. 4. εNd(t) versus 87Sr/86Sr(i) diagram for the Eocene and Miocene mafic
rocks. Data sources are as follows: Jurassic Yeba Formation, Zhu et al. (2008);
Jurassic Sangri Group, Kang et al. (2014); Jurassic Dongga gabbros, Wang et al.
(2017); Late Cretaceous Zhengga gabbros, Ma et al. (2013a); Late Cretaceous
Milin mafic rocks, Ma et al. (2013b); Paleocene phonolitic rocks, Qi et al.
(2018); Eocene Quguasha gabbros, Ma et al. (2017a); Oligocene Chongmuda
adakitic rocks, Jiang et al. (2014); Oligocene Nuri adakitic rocks, Chen et al.
(2015); Himalaya basement, Richards et al. (2005); and Neo-Tethyan ophiolite,
Qiu et al. (2007). Data sources are as for Fig. 2.
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southern Tibet.
The Miocene mafic rocks have high contents of K2O and Th

(81–327 ppm), high Th/La (0.4–1.7) ratios (Fig. 5c; Supplementary
Table 1), and enriched Sr–Nd isotope values (Fig. 4), and these require
recycled sediments to have played a role in producing the enriched
component in the mantle source. Current views on the origin of the
enriched component in the mantle source of the Miocene mafic rocks
involve either oceanic pelagic sediments or ancient Indian continental
crustal materials (Ding et al., 2003; Gao et al., 2007; Zhao et al., 2009;
Guo et al., 2013, 2015; Liu et al., 2014, 2015; Huang et al., 2015; Cheng
and Guo, 2017; Hao et al., 2018). We prefer the latter option based on
the following considerations. (1) The pre-collisional enriched astheno-
spheric and lithospheric mantle wedges beneath the southern Lhasa
subterrane during the subduction of Neo-Tethyan oceanic crust are
represented respectively by the Late Cretaceous (∼93Ma) Milin norites
and hornblendites in the southern Lhasa subterrane (Ma et al., 2013b)
and the Paleocene (∼64Ma) Rongniduo pseudoleucite phonolitic rocks
in the central Lhasa subterrane (Qi et al., 2018), but these rocks have
more depleted Sr–Nd isotopic compositions compared with the Miocene
mafic rocks (Fig. 4). Given that the changes in the chemical and isotopic
compositions of magmas generally record changes in tectonic processes
(e.g., Chu et al., 2011), we propose that the shift from the relatively
depleted pre-collisional mantle (represented by the Milin and Rong-
niduo rocks) to the relatively enriched post-collisional mantle (re-
presented by the Miocene mafic rocks) was induced by the subduction
of Indian continental crust, which could have provided the enriched
components from continental sediments. (2) Previous studies of the
Early Jurassic basalts of the Yeba Formation the Sangri Group, and the
Dongga gabbros in the southern Lhasa subterrane, which formed when
the Neo-Tethyan oceanic crust was undergoing subduction, have shown
that their mantle source was enriched by melts or fluids derived from
subducted oceanic crust rather than from subducted oceanic sediments
(Zhu et al., 2008; Kang et al., 2014; Wang et al., 2017). Moreover, after
compiling data for the ∼492–64Ma mafic rocks of southern Tibet to
characterize the isotopic evolutionary trend of the local mantle, Hao
et al. (2018) inferred that the subduction of Neo-Tethyan oceanic crust
introduced isotopically depleted components rather than enriched
components into the local mantle. Their work also demonstrated that
the local mantle beneath this area was more likely to have been en-
riched by melts or fluids derived from the Neo-Tethyan basaltic oceanic
crust (with depleted Sr–Nd isotopic values) than from melts or fluids
derived from oceanic sediments (with highly enriched Sr–Nd isotopic
values) during subduction. Thus, if subducted Neo-Tethyan oceanic
sediments were not the main cause of enrichment in the mantle beneath
southern Tibet when the Neo-Tethyan oceanic crust was being sub-
ducted, their contribution to the mantle should have been even less
after the cessation of subduction. Therefore, the extreme enrichment of
the local mantle below southern Tibet during the Miocene, as re-
presented by the Miocene mafic rocks, resulted from the addition of
some other component, such as Indian continental crust. (3) Detailed
trace element and Sr–Nd isotopic modeling has indicated that the
mantle source of the potassic–ultrapotassic mafic rocks in southern
Tibet could have been a hybrid source consisting of a depleted (asthe-
nospheric or lithospheric) mantle wedge and less than 10% melts and/
or fluids derived from the Indian continental crust (Guo et al., 2013; Ma
et al., 2017b; Hao et al., 2018). We propose, therefore, that the mantle
source of the Miocene mafic rocks was the depleted (asthenospheric or
lithospheric) mantle wedge together with some recycled Indian con-
tinental crust. However, we should bear in mind that a contribution
from oceanic sediments in the mantle source of the Miocene mafic rocks
cannot be totally excluded, and further research is needed to evaluate
this fully.

Fig. 5. (a) (Th/U)N versus (Nb/Th)N, (b) Al2O3/TiO2 versus Nb/U, and (c) Th/
La versus Th (ppm) diagrams for the Eocene and Miocene mafic rocks. The
reference fields for Cenozoic basalts of East China are from Guo et al. (2016).
The data for GLOSS (global subducted sediments) are from Plank and Langmuir
(1998). The data for MORB, OIB, OAB, and continental crust are from Sun and
McDonough (1989), Niu and Batiza (1997), Kelemen et al. (2003), and Rudnick
and Gao (2003), respectively. The sources of other data are as for Fig. 2.
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4. Transition from sodic OIB-like magmas to
potassic–ultrapotassic mafic rocks

Recent studies have ascribed the change from sodic OIB-like basalts
(mafic dikes) to potassic mafic intrusive rocks in the Hong’an–Dabie
orogens of east-central China to mantle sources with different types of
recycled crustal material (oceanic crust versus continental crust) (Dai
et al., 2012, 2015, 2017; Zhao et al., 2013, 2015; Zheng et al., 2015;
Zheng and Chen, 2016). These rocks are related to the closure of the
Paleo-Tethys, which involved first the subduction of Paleo-Tethyan
oceanic crust and subsequently the subduction of South China con-
tinental crust, and both oceanic and continental crustal materials would
have been recycled into the mantle during the continent–continent
collision. The mantle source (metasomatites) of the Hong’an sodic OIB-
like basalts (mafic dikes) was generated by reaction of the peridotite of
the mantle wedge with felsic melts that originated from the earlier-
subducted Paleo-Tethyan oceanic crust. In contrast, the mantle source
(metasomatites) of the Dabie potassic mafic rocks was generated by
reaction of the peridotite with felsic melts derived from subducted
South China continental crust. The partial melting of these two types of
metasomatites produced the contrasting OIB-like basalts (mafic dikes)
and potassic mafic intrusive rocks in the Hong’an–Dabie orogens (Dai
et al., 2012, 2015, 2017; Zhao et al., 2013, 2015; Zheng et al., 2015;
Zheng and Chen, 2016). The recycling of continental and oceanic crust
into the mantle source has also been used to explain the coexistence of
two types of alkaline rock along the northern margin of the Sino-Korean
craton (Zhu et al., 2017). We suggest here that in southern Tibet, the
change from the Eocene to the Miocene mafic rocks can also be at-
tributed to mantle sources that contained different types of recycled
crustal material (oceanic crust versus continental crust), based on the
following observations.

Experimental studies have shown that the reaction between fertile
peridotite and melts derived from MORB-eclogite can produce meta-
somatites that could be the proximal source of sodic OIB-like basalts
(e.g., Kogiso et al., 1998; Mallik and Dasgupta, 2012). The Na-rich
mantle (metasomatites) could be the result of the melt–rock reactions
involving the assimilation of mantle clinopyroxene, olivine, and spinel
by the oceanic-crust-derived melts as well as the fractional crystal-
lization of sodic amphibole and orthopyroxene in those melts (Prouteau
et al., 2001; Xiong et al., 2006). Direct evidence for such metasomatism
involving oceanic-crust-derived melts and the creation of a Na-rich
mantle comes from ultramafic xenoliths found in arc volcanics. For
example, Kepezhinskas et al. (1995) found that some mantle xenoliths
in volcanic arc rocks from north Kamchatka (Russia) contain the me-
tasomatic mineral phases sodic amphibole, clinopyroxene, and plagio-
clase, as well as veins that are rich in Na. Recycled oceanic crust would
be subjected to partial melting at mantle depths of> 120 km where
felsic melts would be produced that are enriched in LREEs but not
depleted in Nb and Ta due to the breakdown of rutile (Ringwood, 1990;
Zheng, 2012). Furthermore, recycled oceanic crust has depleted Sr–Nd
radiogenic isotope compositions. Thus, partial melting of a mantle
source with recycled oceanic crust would generate melts with sodic
OIB-style trace-element patterns showing enrichment in LREEs, no de-
pletion in HFSEs, and depleted Sr–Nd isotope compositions.

Experimental studies have shown that the partial melting of fertile
peridotite fluxed by hydrous sediments can generate potassic or ultra-
potassic magmas (Mallik et al., 2015). Reaction of mantle peridotite
with K-rich melts derived from metasediments would transform mantle
olivine into orthopyroxene as well as hydrous minerals such as K-rich
amphibole and phlogopite, leading to elevated K2O/Na2O ratios in the
mantle sources and the production of metasomatites such as amphibole-
and phlogopite-rich garnet (or spinel) peridotite or pyroxenite (e.g.,
Sekine and Wyllie, 1982; Castro et al., 2010, 2013). The abundance of
melt-mobile incompatible trace elements and radiogenic Sr–Nd isotope
compositions in mafic igneous rocks is controlled primarily by the
nature of the crustal components involved in their mantle sources

(Zheng, 2012). Sediment-derived melts are usually enriched in LILEs,
depleted in HFSEs, and have enriched Sr–Nd isotope compositions, and
they transfer these geochemical signatures to mantle metasomatites.
Therefore, potassic–ultrapotassic rocks that have their source in such
mantle metasomatites will inherit these features.

The Eocene Na2O-rich mafic rocks have OIB-like trace element
patterns and relatively depleted Sr–Nd isotopic compositions, and their
mantle source would have been formed by the reaction of recycled Neo-
Tethyan oceanic crust with the peridotites of the southern Tibetan
asthenospheric mantle wedge. They are therefore the product of
slab–mantle interactions during the subduction of Neo-Tethyan oceanic
crust prior to the subduction of Indian continental crust. In contrast, the
Miocene K2O-rich mafic rocks have arc-like trace element patterns and
enriched Sr–Nd isotope compositions. Their mantle source (metaso-
matites) would have been formed by the reaction of felsic melts derived
from subducted Indian continental crust with the peridotites of the
southern Tibetan (asthenospheric or lithospheric) mantle wedge. They
are therefore the product of slab–mantle interactions during the sub-
duction of Indian continental crust. The two different kinds of meta-
somatite mantle sources of the Eocene and Miocene mafic rocks could
have been preserved in the mantle wedge for up to 100 Myr, depending
on the time span of the subsequent thermal events (Zhao et al., 2013,
2015; Zheng et al., 2015).

The thermal event that produced the Eocene mafic rocks can be
attributed to slab break-off of the subducted Neo-Tethyan oceanic crust
at 55–45Ma, based on the following evidence. (1) Slab break-off forms
a relatively narrow, linear zone of magmatism along a suture (e.g.,
Kohn and Parkinson, 2002; Mahéo et al., 2002), and it has been shown
that the early Tertiary magmatic rocks are confined to a narrow linear
zone along the southern margin of the Lhasa Block (e.g., Chung et al.,
2005; Lee et al., 2009). (2) Slab break-off would cause pronounced
topographic uplift, which is consistent with the concomitant topo-
graphic uplift of southern Tibet during the Eocene (Chung et al., 1998,
2005; Kohn and Parkinson, 2002; Ding et al., 2014; Rowley et al., 2015;
Zhu et al., 2017). (3) The decrease in the India–Asian convergence rate
at ca. 45Ma (from 8–10 to 4–6 cm/yr) can also be explained by a loss of
slab pull due to slab break-off at this time (Lee and Lawver, 1995;
Bercovici et al., 2015). (4) The ∼53Ma exhumation of ultrahigh-
pressure rocks, now exposed in the NW Himalaya, has also been at-
tributed to the process of Neo-Tethyan oceanic slab break-off (Leech
et al., 2005). (5) The break-off of the Neo-Tethyan oceanic slab may
have triggered the upwelling of asthenospheric mantle, thus causing
extensive mantle and crustal melting and facilitating the so-called
magmatic “flare-up” at ca. 55–50Ma in southern Tibet (Wen et al.,
2008; Ji et al., 2009; Zhu et al., 2015).

In contrast, the Miocene mafic rocks and coeval calc-alkalic lavas
were erupted within or adjacent to N–S graben during 25–8Ma (Coulon
et al., 1986; Turner et al., 1996; Miller et al., 1999; Williams et al.,
2004), and this volcanic and tectonic activity was triggered by regional
E–W extension. Both convective removal of a lithospheric root beneath
the plateau (Turner et al., 1996; Chung et al., 2005) and roll-back and/
or break-off of the subducted Indian continental slab (Miller et al.,
1999; Mahéo et al., 2002, 2009; DeCelles et al., 2011) have been pro-
posed to explain the post-collisional magmatism in southern Tibet.
Based on the following lines of evidence, we favor the proposition that
upwelling asthenospheric mantle, caused by roll-back and/or break-off
of the Indian continental slab, generated the thermal event that pro-
duced the Miocene mafic rocks in southern Tibet. (1) The Gangdese
Oligocene–Miocene intrusive rocks are distributed within a narrow
∼1500-km-long belt along the IYZSZ (e.g., Chung et al., 2005). (2)
There is an increasing proportion of the Indian continental component
in the mantle source, from north to south, together with a southwards-
decreasing trend in the age of the Miocene mafic rocks within XDY rift
(Ding et al., 2003; Guo et al., 2013).
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5. Implications for the tectonic evolution from oceanic crust to
continental crust subduction

It has previously been thought that the Late Triassic–Early Jurassic
(210–174Ma) magmatic belt in southern Tibet recorded the onset of
the subduction of Neo-Tethyan oceanic crust (Zhang et al., 2007; Yang
et al., 2008; Zhu et al., 2008, 2011; Ji et al., 2009; L. Guo et al., 2013;
Kang et al., 2014; Song et al., 2014, Meng et al., 2015). However, the
recent discovery of Middle–Late Triassic (237–212Ma) volcanic rocks
in the southern Lhasa subterrane has revealed that the northwards
subduction of Neo-Tethyan oceanic lithosphere beneath the Lhasa
Terrane started prior to 237Ma (Wang et al., 2016). The IYZSZ marks
the closure of the Neo-Tethys, which took place when the Indian con-
tinental landmass collided with Asia. As continental collision is a
complex process, involving a number of concomitant geological events,
different scientists in particular research domains have concluded that
the timing of initial India–Asia collision ranged between 70 and 34Ma
(Ding et al., 2017 and references therein). Most researchers have pro-
posed that the initial collision occurred at ∼65–55Ma based on the
cessation of Xigaze forearc sedimentation (ca. 58–54Ma; Orme et al.,
2014), geochronological and geochemical data for the Linzizong vol-
canic rocks and coeval intrusive rocks in the Gangdese arc (ca. 55Ma;
Zhu et al., 2015), the abrupt change in sediment provenance recorded
in the Xigaze forearc basin (> 59Ma; Hu et al., 2016), and the onset of
India–Asia terrestrial faunal exchange (ca. 54Ma; Clementz et al.,
2011). Considering the southwards migration of magmatism from
∼30.5°N to ∼29.5°N, together with the abrupt decrease in the rate of
India–Asia convergence between ∼69 and 53Ma (from 12–17 to
10 cm/yr; Lee and Lawver, 1995), we propose a model of interaction
between initial continental collision and slab roll-back of Neo-Tethyan

oceanic crust to account for the above observations in the southern
Lhasa terrane. This is because slab roll-back could have enhanced
asthenospheric corner flow and supplied a prolonged heat source for
producing the early Paleocene magmatism and coeval metamorphism
during the early stage of continental collision in this region (Chung
et al., 2005; Wen et al., 2008; Lee et al., 2009; Zhu et al., 2017; Ma
et al., 2017b). Following India–Asia collision, break-off of the sub-
ducted Neo-Tethyan oceanic slab occurred during the Eocene
(55–45Ma; Section 4), probably weakening the lithospheric mantle.
This would have provided suitable conditions for subduction of the
Indian continent because the break-off of the subducted Neo-Tethyan
oceanic crust would have provided the pulling force for the subduction
of the Indian continent. Geophysical studies have shown that the Indian
lithosphere was subducted under the Lhasa Terrane as far as the Ban-
gong–Nujiang Suture (Nábělek et al., 2009). The following lines of
evidence indicate that the subduction of the Indian continental litho-
sphere beneath Asia occurred before ca. 38Ma, thus following break-off
of the Neo-Tethyan oceanic slab. Firstly, in the southern Lhasa sub-
terrane, the early Oligocene adakitic rocks (∼30Ma) with enriched
Sr–Nd isotope values require the involvement of Indian continental
components in their mantle source, which suggests that the Indian
continental crustal materials were subducted into the middle–lower
crust of the southern Lhasa subterrane before the early Oligocene
(Fig. 4; Jiang et al., 2014; Chen et al., 2015). Secondly, it has been
proposed that the late Eocene (∼35Ma) Quguosha gabbros in the
southern Lhasa Block were generated by partial melting of lithospheric
mantle that had already been enriched by subducted Indian continental
crust (Fig. 4; Ma et al., 2017a). Lastly, the late Eocene–Oligocene
(38–24Ma) ultrahigh-pressure (UHP) eclogites in the western Himalaya
and the coeval high-pressure (HP) granulite facies and medium-

Fig. 6. Schematic illustration of the tectonic evolution of southern Tibet since the Middle–Late Triassic. (a) Subduction of Neo-Tethyan oceanic lithosphere at
238–65Ma. (b) Initial collision of the Indian and Asian continents, and slab rollback of Neo-Tethyan oceanic slab at 60–55Ma. (c) Break-off of subducted Neo-
Tethyan oceanic slab at 55–45Ma. (d) Northwards subduction of Indian continental crust at> 38–25Ma. (e and f) Roll-back and/or break-off of subducted Indian
continental slab at 25–8Ma.
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pressure (MP) amphibolite-facies metamorphic rocks in the eastern
Himalaya also provide evidence that the Indian continental crust had
already been subducted into the middle–lower crust of southern Tibet
at the time of their formation (Mukherjee et al., 2003; Xu et al., 2010;
Zhang et al., 2010). The youngest documented magmas of southern
Tibet are the potassic–ultrapotassic volcanic rocks, adakitic plutons,
and Himalayan leucogranites of Oligocene–Miocene age (25–8Ma), and
these rocks may have been related to roll-back and/or break-off of the
subducted Indian continental lithospheric slab, as proposed in Section
4.

Thus, we propose the following generalized five-stage process to
explain the Eocene mafic rocks and the Miocene mafic rocks of the
southern Tibetan orogen. In stage 1 (∼238–65Ma), the northwards
subduction of Neo-Tethyan oceanic lithosphere beneath the mantle
wedge of the southern Lhasa subterrane probably occurred during the
Middle–Late Triassic, and as eclogite (basaltic protolith) predominates
in the subducted oceanic crust, its partial melting with the breakdown
of rutile is capable of generating felsic melts without Nb–Ta depletion.
The reaction of such felsic melts with peridotite in the asthenospheric
mantle wedge would have generated OIB-type mantle domains (meta-
somatites) beneath southern Tibet (Fig. 6a). Stage 2 (∼65–55Ma) was
marked by the initial collision of the Indian and Asian continents and
slab rollback of Neo-Tethyan oceanic crust (Fig. 6b). In stage 3
(∼55–45Ma), upwelling of the asthenosphere, triggered by break-off of
the subducted Neo-Tethyan oceanic slab, would have heated the me-
tasomatites produced in stage 1 to form the Eocene mafic rocks of
southern Tibet (Fig. 6c). In stage 4 (> 38–25Ma), continental collision
was generally preceded by the subduction of dense oceanic lithosphere,
and this was followed by the subduction of light continental litho-
sphere. Meanwhile, break-off of the subducted Neo-Tethyan oceanic
slab during the Eocene (∼55–45Ma) probably caused weakening of the
lithospheric mantle, thus providing suitable conditions for subduction
of the Indian continent. The reaction between the felsic melts derived
from subducted Indian continental crust and the overlying peridotite of
southern Tibetan (asthenospheric or lithospheric) mantle wedge would
have yielded a fertile, enriched mantle (metasomatites) below this re-
gion (Fig. 6d). During stage 5 (23–8Ma), roll-back and/or break-off of
the north-dipping slab of Indian continental crust would have triggered
asthenospheric upwelling, which would have heated and partially
melted the metasomatites produced in stage 4 to develop the Miocene
mafic rocks of southern Tibet (Fig. 6e–f). Thus, the transition in the
southern Tibet orogen from the Eocene mafic rocks to the Miocene
mafic rocks provides a record of the tectonic evolution of an orogen that
was at first dominated by the subduction of Neo-Tethyan oceanic crust
and which was subsequently dominated by the subduction of Indian
continental crust.

6. Conclusions

The Eocene mafic rocks (gabbros) and Miocene Xuruco
Lake–Dangre Yongcuo Lake potassic–ultrapotassic mafic rocks in
southern Tibet exhibit significantly different geochemical features,
which indicates that they originated from two types of mantle source.
The Eocene mafic rocks exhibit OIB-like trace element patterns and
depleted Sr–Nd radiogenic isotope compositions, consistent with a
mantle source that was generated by the reaction of felsic melts derived
from subducted Neo-Tethyan oceanic crust with peridotites of southern
Tibetan asthenospheric mantle wedge. In contrast, the Miocene mafic
rocks show arc-like trace element patterns and enriched Sr–Nd radio-
genic isotope compositions, indicating a mantle source that was gen-
erated by the reaction of felsic melts derived from subducted Indian
continental crust with peridotites of (asthenospheric or lithospheric)
mantle wedge beneath southern Tibet. Thus, the contrasting geo-
chemical features of the Eocene mafic rocks and the Miocene mafic
rocks in southern Tibet can be attributed to two types of slab–mantle
interaction (i.e., oceanic crust–mantle versus continental crust–mantle)

in this collisional orogen. The transition from the Eocene mafic rocks to
the Miocene mafic rocks in southern Tibet therefore records the tectonic
evolution of this orogen from a regime of Neo-Tethyan oceanic crust
subduction to a regime of Indian continental crust subduction.
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