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Abstract Instrumental records indicate a close relationship between the El Niño‐Southern Oscillation
and the East Asian winter monsoon (EAWM) on interannual to decadal time scales. However, few studies
have examined possible links between them on centennial/millennial time scales. In Northeast China,
modern observations show that the immigration of temperate forest trees such as Pinus (pine) and Quercus
(oak) into cold temperate boreal forest is sensitive to changes in winter temperature. Here we present a
continuous high‐resolution pollen record from Lake Moon in the central part of the Great Khingan
Mountain Range, Northeast China. The record reveals increasing contents of Pinus and Quercus pollen after
~6.0 ka cal. BP, which may indicate a gradual weakening of the EAWM. It is broadly coupled with an
increasing El Niño frequency since the middle Holocene, and we observe a statistically significant
correlation between the percentages of Pinus and Quercus and a time series of El Niño events. On the
centennial to millennial time scale, the results of wavelet analysis and band‐pass filtering show that the
occurrence and development of El Niño have also promoted a weaker EAWM after ~6.0 ka cal. BP, which is
inversely correlated with the variation of the ca. 500‐year cycle originated from changes in solar output.
These results imply that the climate transition in the mid‐Holocene is caused by the change of variations in
solar activity and amplified by ocean circulation El Niño‐Southern Oscillation to influence the East Asian
Monsoon system, especially the EAWM, and finally change the vegetation in Great Khingan
Mountain Range.

1. Introduction

The East Asian winter monsoon (EAWM) is the most active and powerful atmospheric circulation system
during the Northern Hemisphere winter. The EAWM has large environmental, societal, and economic
impacts in its region of influence due to the associated severe cold surges and heavy snowfall. In addition
to regional impacts, the EAWM may have a global impact through its effects on the Walker circulation.
Previous studies have indicated that the EAWM and the El Niño‐Southern Oscillation (ENSO) are tightly
coupled (An et al., 2017; Cheung et al., 2012; Li, 1990; Li et al., 2005; Wen et al., 2000; Zhou et al., 2007).
The ENSO is the abnormal sea surface warming or cooling phenomena affected the globe climate change,
whose main center located over the tropical Pacific Ocean (An et al., 2017; Cheung et al., 2012).
Generally, an El Niño event weakens the EAWM leading to a positive surface temperature anomaly across
most parts of China through changes in anticyclonic circulation over the northwestern Pacific during the
boreal winter, which is reversed in La Niña years (Cheung et al., 2012; Li, 1990; Wen et al., 2000). On the
other hand, a stronger (weaker) EAWM promotes the occurrence and development of El Niño (La Niña)
events (Li et al., 2005; Zhou et al., 2007).

On the interdecadal to decadal time scale, meteorological observations indicate a significant correlation
between ENSO and EAWM (He & Wang, 2013; Kim et al., 2016; Wang et al., 2012). Much effort has been
made to understand the long‐term variability of the EASM using records from loess‐paleosol sequences
(e.g., Ding et al., 1995 ; Sun et al., 2010 ; Xiao et al., 1995), lacustrine sediments (e.g., Liu et al., 2009; Wang
et al., 2012), stalagmites (Sone et al., 2013), and marine sediments (e.g., Huang et al., 2011 ; Steinke et al.,
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2011 ; Yamamoto et al., 2013). On longer time scales, however, only a few studies have examined possible
links between ENSO and the EAWM based on climate model simulations and sediment records from low
latitude regions (An et al., 2017; Xu et al., 2009; Zheng et al., 2014). In addition, there is a distinct lack of
records from the most active region of the EAWM such as the midhigh latitudes of continental Asia.

The distribution of modern vegetation in Northeast China is significantly influenced by winter tempera-
tures; for example, the boundary between the boreal forest and temperate deciduous forest, such as on the
eastern margin of the Great Khingan Mountain Range, is largely determined by winter temperature (Du
et al., 2011). Here we present a winter‐temperature‐sensitive pollen record from a Holocene lake sediment
core from Lake Moon, Northeast China. We use the record to reconstruct the evolution of the EAWM in
the Holocene and to investigate the teleconnection between the EAWM and the ENSO on
centennial/millennial time scales.

2. Materials and Methods
2.1. Study Site

Lake Moon (47°30.36′N, 120°51.99′E, 1,190 m above sea level) is in the Arxan‐Chaihe volcanic field in the
central part of the Great Khingan Mountain Range (Figure 1), 33 km from Chaihe Town, Zhalantun City,
Inner Mongolia. The lake is a crater lake located in a scoria cone (Sun et al., 2017), whose surface area is
~0.03 km2, the maximum water depth is 6.5 m, and there is no inflow or outflow. The annual precipitation
is ~300–600 mm, and the mean annual temperature is−4–0 °C with extremely low temperatures in January,
from −32 to −20 °C. The vegetation surrounding Lake Moon is boreal deciduous broadleaf‐conifer mixed
forest, dominated by Larix gmelinii (Dahurian larch), Betula platyphylla (Siberian silver birch), and
B. dahurica (Asian black birch), which can resist the long cold winter.

2.2. Sediment Cores and Chronology

An 886‐cm sedimentary sequence, comprising three overlapping piston cores, was obtained from the center
of Lake Moon in March 2007. The chronology of the core is based on 21 AMS 14C dates from terrestrial and
aquatic plant macrofossils and bulk sediment; the dating was conducted at Poznan Radiocarbon Laboratory
(Liu et al., 2010; Wu et al., 2016; Wu & Liu, 2012; see supporting information Table S1). The lithology of the
upper 544 cm consists of dark‐brown finely laminated gyttja in Holocene. In this study, a new age‐depth
model is established by Bacon V2.2 (Blaauw & Christen, 2011), a Bayesian approach based on all the radio-
carbon ages previously published (see Figure S1).

Figure 1. Location of LakeMoon. (a) Location of the study site and other paleoclimatic records mentioned in the text. The
trajectory of the East Asian winter monsoon is indicated by blue arrows; (b) distribution of vegetation within the study
region in Northeast China (Wang et al., 2013); winter temperature contours are in degrees Celsius.
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2.3. Methods
2.3.1. Pollen Analysis
Pollen analysis was conducted at a 2‐cm interval. The samples were prepared using standing alkali and acid
treatments (Moore et al., 1991). Pollen grains were identified using an optical microscope at 400X magnifi-
cation with the aid of pollen atlases and keys (Wang et al., 1995; Wang & Wang, 1983). More than 400 ter-
restrial pollen grains were counted for most samples. Pollen percentages for each taxon were calculated
using the sum of terrestrial pollen grains. In addition to the previously published pollen data (Wu & Liu,
2012), we got new data from the upper 50 cm of the sequence to obtain the pollen record from the Lake
Moon spanning the Holocene.
2.3.2. Data Analysis
Spearman rank correlation coefficients (Press et al., 1992) were used to examine the relationship between
variations in the frequencies of tree pollen taxa especially sensitive to the EAWM (Pinus and Quercus) and
a time series of ENSO events. Non‐parametric statistics were chosen because the data sets do not exhibit
Gaussian distributions. As the calculation of Spearman rank correlation coefficients could only be per-
formed between records with the same resolution, the percentages of the Pinus and Quercus records and
ENSO records resampled at a 20‐year resolution based on interpolation. In addition, wavelet analysis
(Torrence & Compo, 1998) of the Pinus and Quercus records was used to provide a simultaneous representa-
tion of the data in the time and frequency domains and thus to investigate the possible localization of cyclic
patterns. Prior to the wavelet analysis, the Pinus and Quercus time series were resampled at a 10‐year resolu-
tion based on interpolation and filtered to remove false cycles. The wavelet analysis was conducted using
wavelet package in Matlab software.

Figure 2. Simplified pollen percentage diagram for Lake Moon.
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3. Results and Discussion
3.1. Pollen Records

Two hundred seventy‐two pollen samples were analyzed, spanning the last 10.8 cal ka BP, with an average
time resolution was 40 a. A simplified pollen diagram for LakeMoon is presented in Figure 2, whose data are
available from Table S2. The pollen spectra can be grouped into the following vegetation categories: cold
temperate boreal forest, temperate forest, mesic herbs, and xerophytic shrubs and herbs. Cold temperate bor-
eal forest taxa mainly comprise Betula andAlnus, while the temperate forest taxa include Pinus andQuercus.
Mesic herbs mainly comprise Poaceae, Cyperaceae, and Thalictrum. Xerophytic shrubs and herbs comprise
Artemisia, Chenopodioideae (Chenopodiaceae), Ulmus, and Ephedra. The pollen record indicates that the
vegetation in the central part of the Great Khingan Mountain Range was forest‐steppe throughout the
Holocene. Nonetheless, there are significant changes in the proportions of the taxa representing the four
groups of plant communities described above, the most prominent of which is the significantly higher fre-
quencies of Pinus and Quercus since ca. 6.0 ka cal BP (Figure 2) compared to their extremely low representa-
tion in the early Holocene.

3.2. Proxies of the EAWM

Previous studies have shown that broad‐leaved deciduous taxa, such as Betula, and boreal forest taxa, such as
Larix, have a high degree of cold tolerance (Prentice et al., 1992; Sakai, 1979; Sakai & Weiser, 1973). In the
present study area, the modern vegetation, that is, deciduous broadleaf‐conifer mixed forest dominated by
Larix gmelinii and Betula spp., is habituated to the long and cold winter (for reference, from 1946 to 1999,
there were 85 days altogether with a daily minimum air temperature of less than −40 °C at the study site,
www.hadobs.org). In contrast, temperate forest trees such as Pinus andQuercus, which are only sporadically
present in the Great Khingan Mountain Range at the present day, are damaged by spontaneous ice nuclea-
tion below −40 °C (Sakai & Weiser, 1973); thus, the winter temperature is a crucial limiting factor for their
survival in midhigh latitude regions. Therefore, the immigration of Pinus and Quercus into the cold tempe-
rate boreal forest represents an increase in the winter temperature and is linked to the weakening of the
EAWM. The extension of Pinus and Quercus is not only recorded at Lake Moon but also in other lake sedi-
ment records from the midhigh latitude region of the Far East after 6.0 ka cal BP, for example, at Tianchi
Lake, Sihailongwan Maar Lake, Lake Kolotel (Figures 1 and 3c–3f) and Jinchuan peat bog (Jiang et al.,
2008; Stebich et al., 2015; Tarasov et al., 2009; Zhou et al., 2016). The contents of Pinus andQuercus in pollen
assemblages at these sites are also likely to be inversely correlated with the strength of the EAWM.

The trends in Pinus and Quercus at Lake Moon are synchronous with other EAWM indicators from low lati-
tudes in the East Asian Monsoon (EAM) region, such as at Fukugaguchi Cave (Sone et al., 2013; Figure 3g)
and Huguang Maar Lake (Wang et al., 2012; Figure 3h). This synchronous behavior clearly demonstrates a
weakening of the EAWM at ~6.0 ka cal BP, confirming the reliability of the pollen proxies as an indicator of
the EAWM, and indicating a teleconnection of climate change in midhigh latitudes and low latitudes of the
EAM region.

3.3. Factors of the EAWM Weakening Since Mid‐Holocene

The increasing percentages of Pinus and Quercus at Lake Moon clearly demonstrate the weakening of the
EAWM since ~6.0 ka cal BP. This trend is consistent with that of increasing winter (December‐January‐
February) insolation at the latitude of study site throughout the entire Holocene (Berger & Loutre, 1991;
Figure 4a; black line), which provides a partial explanation for the warmer winter temperatures in
Northeast China after ~6.0 ka cal BP.

Second, the sea surface temperature (SST) of the western tropical Pacific Ocean could also affect the intensity
of the EAWM. The SST in the western tropical Pacific Ocean has dropped ~0.5 °C over the past 10.0 ka BP
(Stott et al., 2004; Figure 4c; dark blue line). The cooling SST would reduce the land‐sea thermal contrast
between Pacific and Siberian air masses in winter, which weaken the strength of the EAWM under the
assumption of constant Siberian high.

However, the relatively gradual changes in winter insolation and the SST of the western tropical Pacific
Ocean cannot entirely explain the relatively abrupt weakening of the EAWM at 6–5 ka cal BP represented
from this study, Huguang Maar Lake (Wang et al., 2012) and Fukugaguchi Cave (Sone et al., 2013). Thus,
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other potential factors, like ENSO variability on centennial/millennial time scales, need to be considered
(Figure 4b; Cobb & Charles, 2013; Moy et al., 2002). The results of Spearman rank correlation between 11
major pollen taxa from Lake Moon and two time series of ENSO events from the Laguna Pallcacocha,
Ecuador (Moy et al., 2002) and the Northern Line Islands (Cobb & Charles, 2013) were presented in
Table 1. Higher correlation coefficients (0.616, 0.619, 0.426, and 0.418) imply highly significant relationships
between percentages of Pinus and Quercus and frequencies of El Niño events. These results reveal a rela-
tively strong relationship between the EAWM and ENSO events on centennial/millennial time scales.

3.4. Approximately 500‐Year Cycles of the EAWM

In this study, the results of wavelet analysis and band‐pass filtering of the Pinus and Quercus records from
LakeMoon are illustrated in Figure 5. The results show a period of low variance (blue and green colors) from
10.8 to 6.0 ka cal BP and a period of high variance (yellow and red colors) after ~6.0 ka cal BP (Figures 5a, 5c,
and 5e). A prominent feature of the wavelet analysis is that a ~500‐year quasiperiodic component exhibits
stronger variance after ~6.0 ka cal BP (Figures 5a and 5c), and a 400–600‐year band‐pass filter of the data
reveals the same phenomenon (Figures 5b and 5d). These results indicate that ca. 500‐year cycle exists in
the intensity change of the EAWM. A similar periodicity has been noted previously in other Holocene

Figure 3. Time series of Pinus and Quercus frequencies at Lake Moon and other lake sites in midhigh latitudes of the East
Asian Monsoon region compared with other EAWM proxies from the East Asian Monsoon region. (a and b) Records of
Pinus andQuercus fromLakeMoon (this study); (c) Pinus record fromLakeKotokel (Tarasov et al., 2009); (d and e) records
of Quercus and Pinus from Tianchi Lake (Zhou et al., 2016); (f) Pinus record from SihailongwanMaar Lake (Stebich et al.,
2015); (g) δ18O record (‰, VPDB (Vienna Pee Dee Belemnite); 5‐point running average) from Fukugaguchi Cave (Sone
et al., 2013); (h) EAWM indicator from Huguang Maar lake (Wang et al., 2012). EAWM = East Asian winter monsoon.
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paleoclimate records from Northeast China, including plant cellulose in
peat deposits (Hong et al., 2001) and pollen records from maar lakes in
Longgang Volcanic Field (Stebich et al., 2015; Xu et al., 2014). This peri-
odicity is evident in the proxy records of the EASM including summer
temperature and rainfall; in this study it is also evident in a record of
the EAWM.

The wavelet analysis and the band‐pass filter of the frequencies of El Niño
events recorded in the sedimentation from Laguna Pallcacocha, Ecuador
(Figures 5e and 5f; Moy et al., 2002), also present similar results with
the proxies of the EAWM that a ~500‐year quasiperiodic component exhi-
bits stronger variance after ~6.0 ka cal BP (Figures 5e and 5f). All these
results indicate that the variance of ca. 500‐year cycle becomes greater
both in the intensity change of the EAWM and the frequencies of the
ENSO events after ~6.0 ka cal BP.

Ca. 500‐year cycle originates from changes in solar output (Steinhilber
et al., 2012; Stuiver et al., 1995), which affects the dynamics of atmo-
spheric and oceanic processes (Chapman & Shackleton, 2000; Cheng
et al., 2016; Wang et al., 2005; Zhu et al., 2017). The amplitude of variation
of ~500‐year quasiperiodic component of solar output before ~6 ka cal BP
is greater than that after, which was not detected in the climate records in
Northeast China in early Holocene in previous and this study (Stebich
et al., 2015; Xu et al., 2014). This phenomenon indicates that the EAM sys-
tem is closely linked to the high‐latitudes processes in early Holocene,
mainly the global ice volumes, while the impacting of the tropical telecon-
nection between ENSO and the EAM system becomes more significant
during the midlate Holocene with the decreased global ice volumes
(Wang et al., 2012). The anomalous anticyclone located in the western
North Pacific has existed since ~6 ka cal BP as the bridge between
ENSO and the EAWM, which is joint with strong southerly winds along
the East Asian coasts weakened the EAWM significantly (Wang et al.,
2000; Wang et al., 2012). On these views, it is believed that the variation
of solar output makes the weakening of the Walker circulation, the
increasing of El Niño events, and the shrinkage of the EAWM since the
mid‐Holocene. This transition is synchronous with the onset of the “mod-
ern” ENSO (Moy et al., 2002; Sandweiss et al., 2001) and also is widely
acknowledged globally in the mid‐Holocene (Mayewski et al., 2004;
Steig, 1999) as the termination of the Holocene thermal maximum, the
hemispheric even global cooling, drier conditions in central to eastern
Asia and Africa under the abrupt weakening of the monsoonal system,
wetter conditions in northern Europe and southern South America
(Magny et al., 2006; Roland et al., 2015; Zhou et al., 2016). The synchroni-
city of all these transitions implies that a reorganization in the Earth's
ocean‐atmosphere circulation system occurred in the mid‐Holocene.
This global event was ascribed to variations in solar activity, orbitally dri-
ven insolation changes (Hodell et al., 2001; Magny & Haas, 2004;
Mayewski et al., 2004; Wanner et al., 2008) or nonlinear feedback pro-
cesses within the climate system components, especially changes in ocean
circulation (e.g., NAO (North Atlantic oscillation), ITCZ (intertropical
convergence zone), and ENSO; Holmes et al., 2011; Schneider, 2004;
Wunsch, 2006). Based on this study, the climate transition in the mid‐
Holocene is caused by the variations in solar activity and amplified by
ocean circulation ENSO to influence the EAM system and then change
the vegetation in Great Khingan Mountain Range, Northeast China.

Figure 4. Comparison between the pollen records from Lake Moon with
winter insolation at 45°N, two El Niño‐Southern Oscillation indices and
SST of the western tropical Pacific Ocean. (a) Pollen records of Pinus (red
line) and Quercus (green line) from Lake Moon and winter insolation at
45°N from Berger and Loutre (1991; black line); (b) El Niño‐Southern
Oscillation indices recorded by the lacustrine sediment from the Laguna
Pallcacocha from Moy et al. (2002) (purple line) and the fossil coral records
from the Northern Line Islands from Cobb and Charles (2013; light blue
line); (c) SST recorded by the oxygen isotope and Mg/Ca data from forami-
nifers in the western tropical Pacific Ocean from Stott et al. (2004; dark blue
line). SST = sea surface temperature.

Table 1
Spearman Rank Correlation Coefficients for Two El Niño‐Southern
Oscillation Indices (Cobb & Charles, 2013; Moy et al., 2002) and the
Frequencies of Major Pollen Taxa at Lake Moon (20‐year Resolution)

Spearman rank
correlation

El Niño event
(Moy et al., 2002)

Sand %
(Cobb & Charles, 2013)

Pinus (%) 0.616 0.426
Quercus (%) 0.619 0.418
Alnus (%) 0.262 0.313
Betula (%) −0.001 −0.229
Ulmus (%) −0.439 −0.365
Ephedra (%) −0.498 −0.285
Artemisia (%) −0.223 −0.076
Chenopodiaceae (%) 0.032 0.329
Poaceae (%) 0.167 0.177
Cyperaceae (%) 0.143 0.507
Thalictrum (%) −0.188 −0.082

Note. Bold indicates significant at the 0.1% level.
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4. Conclusions

We have obtained a time series of warm winter events since 10.8 cal ka BP based on the changes in the fre-
quencies of Pinus andQuercus pollen in the sediments of LakeMoon, in Northeast China. The data provide a
robust record of changes in EAWM intensity in the midhigh latitude region of the EAM, and it extends the
time scale of a teleconnection between El Niño events and the EAWM from interannual/interdecadal
to centennial/millennial.

The results of correlation analysis indicate that the EAWM weakened after 6.0 cal ka BP which was also
related to the frequency of El Niño events on centennial/millennial time scales. Furthermore, the

Figure 5. Wavelet spectrum and band‐pass filtering calculated on pollen records and El Niño‐Southern Oscillation index.
(a–d) Results of wavelet spectrum and band‐pass filtering calculated on Pinus (%) andQuercus (%) record from LakeMoon;
(e and f) results of wavelet spectrum and band‐pass filtering calculated on red color intensity record from the Laguna
Pallcacocha from Moy et al. (2002); the red line (b, d, and f) is the results of the band‐pass filtering calculated on the δ14C
residuals indicated the change of solar output (Stuiver et al., 1998). The wavelet power spectra for Pinus and Quercus
were obtained after interpolation to evenly spaced data. The shape of the mother wavelet was set to Morlet. High
(low) power is indicated by red (blue) color. High power can reach 32 or 64 values, while low power can be as low as 1/32
or 1/64 values. The 5% significance level against red noise is shown as a thick contour. The dark shaded area indicates the
cone‐of‐influence, where edge effects become significant. This means the result of this area is unreliable.
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enhancement of El Niño events was the result of the increased prominence of the ~500‐year cycle in solar
output during the mid‐Holocene.

Based on the results from this study, the climate transition in themid‐Holocene is caused by the variations in
solar activity and amplified by ocean circulation ENSO to influence the intensity of the EAWM and change
the vegetation in Great Khingan Mountain Range, Northeast China.
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