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Abstract We present a statistically robust reconstruction of Thailand's Chao Phraya River peak season
streamflow (CPRPF) that spans the 202 years from 1804 to 2005 CE. Our reconstruction is based on tree
ring δ18O series derived from three Pinus merkusii sites from Laos and Thailand. The regional δ18O index
accounts for 57% of the observed variance of CPRPF. Spatial correlation and 21‐year running correlation
analyses reveal that CPRPF is greatly influenced by regional precipitation variations associated with the El
Niño–Southern Oscillation (ENSO). Periods of enhanced and reduced ENSO activity are associated with
strong and weak ENSO‐streamflow correlation, respectively. At the longer timescale, the Pacific Decadal
Oscillation (PDO) appears to modulate the ENSO‐streamflow correlations, with the most extreme flood
events along the Chao Phraya River occurring during periods of increased frequency of La Niña events that
coincide with extended cold phases of the PDO. The CPRPF reconstruction could aid management planning
for Thailand's water resources.

Plain Language Summary We present a 202‐year reconstructed record of the peak season
streamflow from the Chao Phraya River in Thailand. Our reconstruction is derived from the average of
δ18O from three tree ring sites in Thailand and Laos, upstream of the Chao Phraya River. We found strong
connection between the streamflow and the Pacific Ocean climate modes. The result reveals short‐term
pulses in extreme flow conditions embedded in the longer‐term climate variations. Such information could
be used to assess streamflow variation and thereby aid water management planning.

1. Introduction

The Chao Phraya River (CPR) Basin encompasses one third of Thailand's total area, comprised of the coun-
try's four major rivers that drain the north (Ping and Wang) and east (Yom and Nan) regions of the country
(Figure 1a). Being the largest river basin in Thailand, changes in the CPR flow regime have a direct impact
on Thailand's agricultural and economic sectors (Siripong et al., 2000). Severe flooding in 1995 and 2011
caused billions of dollars in damage (Promchote et al., 2016; Re, 2011; Siripong et al., 2000). Given its impor-
tance, it is imperative to understand the processes that control CPR peak flow (CPRPF) and evaluate the
implications of future changes to the regional climate. Despite marked uncertainty, the mean annual river
discharge for the CPR basin is projected to increase (Kure & Tebakari, 2012), while discharge for the small
tributaries of the CPR may decrease (Hunukumbura & Tachikawa, 2012). The instrumental streamflow
record of CPR extends only as far as 1956, however, which is an insufficient timespan to capture long‐term
changes of flow related to multidecadal to centennial climate variability. Proxy reconstructions of the mag-
nitude, intensity, and periodicity of streamflow variations at different time scales will therefore be of value
for determining the primary factors that control CPRPF.

One promising way to extend the instrumental record of streamflow is to utilize regional tree ring records as
proxies for streamflow through the connection to hydroclimate (e.g., Stockton & Jacoby, 1976). Due to their
annual resolution, tree rings are easily comparable with observed streamflow data and have been
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successfully applied in many regions of the world for reconstructing streamflow (e.g., D'Arrigo et al., 2011;
Derose et al., 2015; Gou et al., 2010; Lara et al., 2008; Meko et al., 2012; Nguyen & Galelli, 2017; Woodhouse
et al., 2006). Despite the challenges associated with cross‐dating tropical tree rings, a growing body of
annually dated tree ring records have emerged from Southeast Asia that make it possible to attempt such
a reconstruction for the CPR. Previous tree ring studies from the CPR basin include research on two Pinus
species (P. merkusii and P. kesiya), and it is a selection of these records that form the basis of the current study
(Buckley et al., 1995, 2005, 2007; D'Arrigo et al., 1997; Pumijumnong & Eckstein, 2011). However, prior stu-
dies reveal that annual ring width measurements from these two Pines from Laos and Thailand do not sig-
nificantly correlate with monsoon season precipitation but rather yield a less easily interpretable
relationship with regional climate (e.g., Buckley et al., 1995, 2005, 2007; D'Arrigo et al., 1997;
Pumijumnong & Eckstein, 2011). As a result, we do not utilize the ring width records from our pine sites
as predictors of CPRPF, relying instead on the stable isotope records as discussed below.

Recent studies of δ18O from the cellulose of Southeast Asian tree species have demonstrated a connection to
regional hydroclimate variability with unprecedented clarity (Sano et al., 2012; Xu, Pumijumnong, et al.,
2018; Xu et al., 2015; Xu et al., 2011; Xu, Sano, et al., 2013; Zhu, Stott, Buckley, & Yoshimura, 2012; Zhu,
Stott, Buckley, Yoshimura, & Ra, 2012). These studies all showed that tree ring δ18O is significantly corre-
lated with monsoon season precipitation (Xu et al., 2015; Xu, Sano, et al., 2013; Zhu, Stott, Buckley, &
Yoshimura, 2012; Zhu, Stott, Buckley, Yoshimura, & Ra, 2012). In addition, Xu et al. (2015) found no age‐
related effect on tree ring δ18O for Pinus merkusii in Thailand. Therefore, regional tree ring δ18O should
be applicable to reconstructing streamflow with little loss of low‐frequency variability, as is often the case
with ring width‐based reconstructions of climate. While tree ring width is limited in its ability to capture
peak flow due to ecophysiological factors related to the law of limiting factors (Fritts, 1976), δ18O as a geo-
chemical measurement is not necessarily constrained by the same ecophysiological factors.

For this study we developed a regional Pinus merkusii δ18O index for the CPRB based on the average of three
tree ring δ18O time series in northern and central Thailand, and northcentral Laos (MHS, UP, and PKK,
respectively, as shown in Figure 1a). The PKK δ18O time series from Laos is presented for the first time
here, along with two previously published records from Thailand (δ18O in UP from Xu, Pumijumnong,
et al., 2018, and δ18O in MHS from Xu et al., 2015).

2. Materials and Methods
2.1. Pinus merkusii δ18O Chronology Development in Northcentral Laos

With this study we present the first δ18O time series from crossdated Pinus merkusii cores from the Phou
Khao Khouay National Biodiversity Conservation area (PKK) in northcentral Laos (Figure 1a). These trees

Figure 1. Map of the study area showing (a) the locations of the three Pinus merkusii sites used for this study (black squares and triangle), along with the Nakhon
Sawan gauging station (black circle) on the Chao Phraya River and tributaries (blue lines). In (b) we plot the three δ18O series used for this study along with in (c) the
composite regional δ18O record for 1748–2005. The red line (30‐year splined values) emphasizes the decadal variability of changes in δ18O over the past 257 years.
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were collected, crossdated, and measured for ring width by Buckley et al. (2007). These authors determined
that while direct correlation with rainfall and temperature were weakly expressed, the most significant
correlations were found between ring width and tropical Pacific sea surface temperatures (SSTs) along the
regions associated with El Niño–Southern Oscillation (ENSO). From the Buckley et al. (2007) core collection
we selected five trees for stable isotope analyses (ANMPM06, ANMPM09, ANMPM13, ANMPM14, and
TGLPM04), choosing samples that exhibited the fewest missing rings and the highest correlation with the
master chronology. These samples were accurately crossdated, and all information on the study area, cross-
dating procedures, and the climatic implications of ring width in PKK can be found in Buckley et al. (2007).
We used the modified plate method to extract α‐cellulose from wood plate samples as described by Xu et al.
(2011) and Xu, Zheng, et al. (2013). Oxygen isotope (δ18O) measurements from the tree ring samples were
determined by an isotope ratio mass (Delta V Advantage, Thermo Scientific) at the Research Institute for
Humanity and Nature, Japan. The analytical uncertainty for repeated measurements of cellulose was
approximately ±0.19‰ (n = 115).

The mean values of the δ18O time series from the five selected core samples (ANMPM06, ANMPM09,
ANMPM13, ANMPM14, and TGLPM04 as shown in Figure S1a) are 23.52‰, 23.58‰, 23.54‰,
22.80‰, and 24.27‰, respectively, during the common period of 1868–1995. The corresponding standard
deviations for each series are 1.17‰, 0.91‰, 1.17‰, 1.00‰, and 1.24‰. The yearly δ18O standard devia-
tions for the five trees vary between 0.21‰ and 1.61‰ (mean = 0.77‰). Intertree δ18O variations show
high coherence (Table S1 and Figure S1 in the supporting information), reflecting their common
response to climate. All five tree ring δ18O time series were normalized based on the common period
of 1868–1995 and were then averaged to produce the PKK δ18O index (Figure S1c). The first order
autocorrelation for PKK δ18O is 0.20, which is similar with the two other Pinus merkusii δ18O indices
used for this study: from MHS (0.17, Xu et al., 2015) and UP (0.16, Xu, Pumijumnong, et al., 2018).
The low autocorrelation for all three δ18O records indicates that physiological processes from prior years
are not significantly correlated with δ18O values in any given year, something that is often strongly
expressed for ring width time series (Fritts, 1976). All three δ18O records are significantly correlated with
the monsoon season precipitation in the CPR basin and were therefore combined to reconstruct the
CPRPF for the past 257 years.

2.2. Regional δ18O Chronology Development

The three Pinus merkusii δ18O records used for the current study include MHS from northwestern Thailand
(Xu et al., 2015), and UP from westcentral Thailand (Xu, Pumijumnong, et al., 2018), in addition to PKK
from central Laos included here for the first time. These records are significantly correlated with the
monsoon season precipitation in the CPR basin (Figure S2) and were subsequently combined for use in
reconstructing peak monsoon rainfall, passing all of the rigorous statistical tests for calibration and verifica-
tion commonly employed in dendroclimatology. The three tree ring δ18O records are also significantly
correlated with each other as shown in Figure 1b (rPKK‐UP = 0.46; rPKK‐MHS = 0.53; and rMHS‐UP = 0.60),
reflecting a common forcing from the regional monsoon season precipitation. We therefore normalized all
three records over the common period of 1828–1999 and took their average to produce a regional δ18O index
(CPRB18O as plotted in Figure 1c).

2.3. Climatic and Statistical Analyses

To explore the streamflow relationship with climate variations, we compared our record against several
climatic indices: Niño 3.4 from National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center, Pacific Decadal Oscillation (PDO) index from Mantua et al. (1997), Indian Ocean dipole
index from Saji et al. (1999), and regional gridded precipitation and global SST data sets from the
NOAA/Office of Oceanic and Atmospheric Research (OAR)/Earth System Research Laboratory (ESRL)
Physical Sciences Division (PSD). Precipitation data from CRU TS4.0 and SST from the COBE‐SST2 data
set, also provided by the NOAA/OAR/ESRL PSD, were used to evaluate the spatial correlation and regres-
sion between the δ18O series/observed streamflow of the CPR and regional precipitation/SST. In addition,
six tropical Pacific SST reconstructions (Cook et al., 2008; Emile‐geay et al., 2013; Li et al., 2013; Liu et al.,
2017; McGregor et al., 2010; Tierney et al., 2015) were averaged to produce a composite ENSO index, which
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was then used to explore the impact of remote oceans on CPRPF. Two PDO reconstructions (MacDonald &
Case, 2005; Shen et al., 2006) were averaged as a composite index to evaluate PDO's modulation on CPRPF.

3. Results and Discussion

While evaluating the relationship between the CPR streamflow and tree ring δ18O, we found that the peak
flow coincides with the summer monsoon precipitation during the August–November period, which
accounts for 63% of the annual discharge. Based on these relationships, we followed the methodology
described by Cook and Kairiukstis (1990) and employed a linear regression model to transfer the tree ring
δ18O data to CPRPF in order to produce a statistically robust reconstruction of peak season streamflow.
The Pearson's correlation coefficient (r), explained variance (R2), reduction of error, and coefficient of
efficiency (CE) were used to evaluate the validity of the linear regression model (Cook et al., 1999) and
are shown in Table S2.

3.1. Climate Response of CPRB18O and Streamflow

We conducted correlation analyses between CPRB18O and CPR monthly streamflow from the Nakhon
Sawan gauging station and reveal a significant, negative correlation (−0.76 during the common period of
1956–1999, p < 0.01) between CPRB18O and August–November streamflow. This is consistent with the
anticorrelation between rainfall amount and δ18O known as the “amount effect” (Risi et al., 2008). A similar
negative correlation between tree ring δ18O and streamflow was also found for northern Lao cypress and
northern Thailand P. merkusii (Xu et al., 2015; Xu, Sano, et al., 2013, respectively).

Figure 2. The top panel (a) plots the correlation coefficients between monthly Chao Phraya River (CPR) streamflow and
the CPRB18O index for the period of 1956–1999. The dashed line shows the 95% confidence limit, exceeded by months
8–11 (August–November). In the middle panel (b) we plot the full 1804–2005 Chao Phraya River peak season
(August–November) flow reconstruction with the standard error of uncertainty shown by the gray shading around the
mean. The red line in (b) is the observed values against the reconstructed values in black with decadal variability shown
by the heavy black line (30‐year splined values). In the bottom panel (c) we plot the time‐varying calibration and
verification statistics over the period 1804–2005.
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There are very few statistically calibrated and verified reconstructions of
streamflow from tropical Asia. D'Arrigo et al. (2011) reconstructed
Indonesia's Citarum River based on ring width measurements from regio-
nal teak sites that exhibited a strong direct correlation between rainfall
and September–November streamflow. More recently, Nguyen and
Galelli (2017) used the tree ring width‐derived Monsoon Asia Drought
Atlas data (Cook et al., 2010) to reconstruct the annual flow of north
Thailand's Ping River. In comparison, our simple linear regression using
the CPRB18O as a predictor resulted in a reconstruction model that
accounted for 57% of the variation in CPRPF for the period 1956–1999.
In our model, both reduction of error and CE statistics were well above
0 during the period of 1804–1999, indicating a predictive skill that satisfies
common calibration and verification measures (Table S2). However, due
to low sample depth, our reconstruction is not robust prior to 1804 and
after 2000, as indicated by the CE statistic (Table S2), a metric that is
affected by low sample depth (Cook & Kairiukstis, 1990). Despite the
increased difference between the reconstructed and observed CPRPF dur-
ing the period of 1987–1992, which may be related to the reduced variance
of observed CPRPF, the reconstructed and observed CPRPF show consis-
tent variations during most of the common period (Figure 2b). Because
our CPRPF reconstruction prior to 1804 is based on only two tree ring
δ18O series from central Laos and the CE values are below zero during
the period of 1748–1803 (Table S2 and Figure S1), all ensuing analyses
of our CPRPF reconstruction focuses on the robust period of our recon-
struction since 1804.

We used one standard deviation from the mean as a threshold for
determining extreme drought and flood events for CPRPF and reveal
a history of extreme high and low flows of the CPR from 1804 to
2005 (Figure 2b). The full reconstruction mean and standard deviation
(σ) are 15.25 and 4.13 × 109m3, respectively. Spectral analyses based
on the multitaper method (Mann & Lees, 1996) indicate that CPRPF
contains interannual (2–7 years) and multidecadal (~67 years) varia-
tions at a confidence level greater than 95% (Figure S3). A 21‐year
running average highlights the decadal‐scale fluctuations, with high
streamflow periods (>1σ) for 1804–1830, 1860–1885, and 1940–1970
and low flow periods for 1900–1940 and 1971–2000 (Figure 2b). The

21‐year running variance of CPRPF showed reduced variance in the period of 1830–1860 and 1920–
1960 (Figure 3c).

3.2. Human Impacts on CPRPF

The Chao Phraya River has undergone considerable human modifications (Siripong et al., 2000), exempli-
fied by the construction of Bhumibol Dam and Sirikit dam in 1968 and 1972, respectively. These dams
combined control 22% of the Chao Phraya's annual runoff. Shifting cultivation and irrigation also changed
the hydrological regime (Siripong et al., 2000). To gauge the possible influence of human activity on CPRPF
at Nakhon Sawan, we calculated the spatial correlation of May–October precipitation in the upper and mid-
dle reaches of the CPR and subsequently found significant positive correlations (r = 0.83, p < 0.0001) with
the observed CPRPF (Figure S4a). Moreover, the 21‐year running correlation between observed CPRPF
and May–October precipitation is relatively stable during the last 50 years (r > 0.78; Figure S4b). These
results indicate that the sheer volume of the rainy season precipitation profoundly influences CPRPF at
Nakhon Sawan, despite the increased intervention of streamflow by human activities. Nevertheless, human
activities (i.e., damming) inevitably would lead to certain degrees of uncertainty in the river flow itself, and
this uncertainty would be added on top of the regressionmodel's uncertainty, which is shown in Figure 2b in
the form of plus/minus standard error (bottom of the graph), following Esper et al. (2007).

Figure 3. Twenty‐one‐year running correlations between our reconstructed
Chao Phraya River (CPR) streamflow and the observed Niño 3.4 Index (a),
and the Composite El Niño–Southern Oscillation (ENSO) index (b) (the gray
dashed lines in panels (a) and (b) indicate the 95% confidence levels). In
panels (c) and (d) we plot the 21‐year running variance for CPR streamflow
and composite ENSO index, respectively.
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3.3. Climate Influences on CPRPF Variations From Remote Oceans

The observed CPRPF correlates significantly (p < 0.05) with the May–December Niño 3.4 index and
July–December PDO index over the period of 1956–1999 (Table S2). The sliding correlation analysis

Figure 4. Correlation patterns of sea surface temperature (May–December) with (a) observed streamflow (August–
November, 1956–1999) and (b–d) reconstructed streamflow for three periods (August–November, 1850–1900, 1900–
1950, 1950–2005, respectively). Hatched areas indicate the significance of correlation coefficients that exceed the 99% level
of confidence.
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between ENSO and our reconstructed CPRPF shows generally strong correspondence for the period
1854–2005, but weakening between 1921–1960 and 1831–1860 when the CPRPF and ENSO variances
were both low (Torrence & Webster, 1999, Figures 3a, 3c, and 3d). The observed CPRPF is positively
correlated over the entire CPR basin (Figure S4), which suggests a regional‐scale response to ENSO that is
consistent with previous studies (D'Arrigo et al., 2011; Liu et al., 2011; Xu et al., 2016; Xu, Shi, et al., 2018;
Xu, Zheng, et al., 2013). Specifically, Xu, Pumijumnong, et al. (2018) showed that ENSO affects the rainy
season precipitation in the central part of the CPR basin and suggested that the reduction in the ENSO‐
precipitation relationship between 1930 and 1970 corresponds to the reduced ENSO variance. We
computed the spatial correlation map between the observed CPRPF and May–December SST, and the
result in Figure 4a outlines a warm‐phase ENSO (El Niño) with warmer water over the central‐eastern
Pacific and the northern Indian Ocean. However, the ENSO‐precipitation relationship in the upper CPR
basin dissipated during the last 20 years and earlier studies have suggested that this phenomenon may be
related to the shift of the descending arm of the Walker Circulation (Singhrattna et al., 2005; Xu et al., 2015).

In order to examine the interdecadal changes in the streamflow‐ENSO relationship as inferred from
Figure 3, we computed the SST correlation maps with the reconstructed streamflow for three different
periods, 1850–1900, 1900–1950, and 1950–2005 (Figures 4–4d, respectively). Based on the relationship
between observed CPRPF and ENSO/PDO (Table S3), May–December SST across the Pacific has the
strongest influences on streamflow and was therefore used for all correlation maps. The results are consis-
tent with a warming over the central‐eastern Pacific associated with varying SST patterns elsewhere
(Figure 4). Some features are noteworthy, including the more recent appearance of the northern Indian
Ocean correspondence (Figure 4d) and the relatively strong western tropical Pacific and the western
South Pacific signals during the earlier period (Figures 4b and 4c). We also observed a change in the classic
“horseshoe” shape of the PDO in the central North Pacific and the eastern‐Pacific coast during the recent
period of 1950–2005 (Zhang & Delworth, 2015), which coincides with the more robust ENSO pattern and its
possible increase in teleconnection effects over Southeast Asia (Li et al., 2018; Stuecker, 2018; Yu et al.,
2010, 2012). Furthermore, the recent intensification of the northern Indian Ocean connection (Figure 4d)
seems indicative of the monsoon forcing in modulating the CPRPF. These results further support the

Figure 5. In (a) we plot the number of extreme drought (red bars) and flood events (blue bars) per decade, as derived from
our Chao Phraya River peak‐season streamflow reconstruction; in (b) we plot the 11‐year running average of the com-
posite Pacific Decadal Oscillation (PDO) index during the last two hundred years with red reflecting positive PDO and blue
negative PDO.
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changing ENSO pattern and the increase of ENSO variances as shown in Figure 4d. We should note that
while the spatial correlations (Figure 4) also seems to depict the Interdecadal Pacific Oscillation (IPO) pat-
tern (Dong & Dai, 2015; Meehl et al., 2013), a comparison of our CPRPF reconstruction with a new IPO
reconstruction (Buckley et al., 2019) reveals that the present CPRPF reconstruction is not significantly cor-
related with the IPO.

During El Niño, Southeast Asian droughts may increase in intensity, especially so during PDO warm phases
(Wang et al., 2014). When the PDO is in phase with ENSO, their combined impact on precipitation and
CPRPF may be enhanced by the SST gradient across the central‐western Pacific (Figure 4d, 1950–2005).
Such intensification might also be expected to strengthen the monsoon trough over the CPRB. By highlight-
ing the protracted, extreme drought and flood events in Figure 5 (1810–1830, 1900–1920, and 1960–1980), a
marked increase is revealed over the last two decades. Based on the comparison between an 11‐year running
average of the composited PDO index and extreme events for CPRPF (Figure 5), the number of extreme flood
events appears to increase when PDO is in its cold phase (e.g., 1960–1980) and decrease when PDO is in its
warm phase (e.g., 1920–1940 and 1980–2000). The post‐1980 warm phases of PDO correspond to the increase
in extreme drought as expressed by reduced CPRPF. Similar relationships between monsoon rainfall and
PDO were also reported over India and Myanmar (Roy et al., 2003; Sen Roy & Sen Roy, 2011). All of these
results indicate that PDO may be the most important factor modulating the interdecadal variability of
extreme events for CPRPF.

4. Conclusions

A regional tree ring cellulose δ18O (CPRB18O) record was developed from the Chao Phraya River basin in
Thailand for the period 1804–2005, based on the combination of three 18O tree ring records from
Thailand and Laos. The CPRB18O chronology is significantly, negatively correlated (r = −0.76, p < 0.01)
with the August–November CPR streamflow, allowing for a robust reconstruction (57% explained variance)
of peak flow for the past 202 years. Our reconstruction reveals significant interannual variability within
2–7 years that is coincident with the influence of ENSO. This association is corroborated by statistically sig-
nificant correlation with several ENSO data sets. The CPRPF‐ENSO relationship appears to be influenced by
the change in ENSO variance, such that periods of enhanced or reduced ENSO activity are associated with
strong or weak ENSO‐CPRPF correlation, respectively. Different phases of the PDO also appear to modulate
the ENSO‐CPRPF relationship, in that the number of extreme flood events increased during ENSO cool
phase (La Niña) and more so during the PDO cold phase. Combined with projected increases in ENSO var-
iance (Cai et al., 2014; Yoon et al., 2015), the CPRPF reconstruction presented here could implicate a more
fluctuating future when it comes to extreme events.
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