The manifestation of the Younger Dryas event in the East Asian summer monsoon margin: New evidence from carbonate geochemistry of the Dali Lake sediments in northern China

Jiawei Fan,1,2 Jule Xiao,1,2,3 Ruilin Wen,1,2 Shengrui Zhang,1,2 Xu Wang,1,2 Linlin Cui,1,2 Yanhong Liu,4 He Li4 and Jiaojiao Yue5

Abstract
The processes and mechanisms of the Younger Dryas (YD) event in the modern northern margin of the East Asian summer monsoon (EASM) are still heatedly debated. This study presents new high-resolution (~25 years) records of elements and stable isotopes of <38-µm calcites from a sediment core from Dali Lake in order to investigate the climatic change in the EASM margin at the last glacial–interglacial transition. The <38-µm calcites in the Dali Lake sediments are cubical or rhombohedral, implying that they are predominately by endogenic calcites precipitated within the water body of the lake. High values of Ca and Mg concentrations of the endogenic calcites are interpreted as strong evaporation and low dissolved CO2 concentration of the lake water related to high regional temperature. Concurrent increases in δ13C and δ18O values of the endogenic calcites are interpreted as the result of intensified evaporation associated with high temperature or low precipitation in the region. These data indicate that the climate in the Dali Lake region was relatively warm and wet from 15,500 to 12,800 and from 11,550 to 10,000 cal. yr BP, and cold and dry from 12,800 to 11,550 cal. yr BP, which was generally supported by the evidence from the data of sedimentary organic matter from the same sediment core. In addition, the abruptness of the temperature change in the Dali Lake region from 12,800 to 11,550 cal. yr BP could be corresponded, within age uncertainties, to the YD cold reversal occurring over northern high latitudes. The atmospheric coupling between the North Atlantic region and the EASM margin was proposed as the dominant pattern influencing the climatic change in the Dali Lake region during the YD event.

Keywords
East Asian summer monsoon, endogenic calcite, Northern China, paleoprecipitation, paleotemperature, Younger Dryas

Introduction
The Younger Dryas (YD) event, a severe cold reversal that interrupted the global warming during the last deglaciation, had drawn great attention from the paleoclimatologists (e.g. Bond et al., 1997; Dansgaard et al., 1993; Heinrich, 1988). It was suggested that significant weakening of the North Atlantic meridional overturning circulation (AMOC) which might have been triggered by a large amount of Arctic meltwater input (Broecker et al., 1989; McManus et al., 2004; Tarasov and Peltier, 2005) caused significant temperature decreases of 10–15°C in the Greenland region during the YD period (Alley, 2000; Johnsen et al., 2001; Severinghaus et al., 1998). Previous studies emphasized the influence of bipolar seesaw driven by the reduction in AMOC on the opposite trends of temperature changes between Northern and Southern Hemispheres (NH and SH) during the YD period (e.g. Shakun and Carlson, 2010). However, it is still unclear whether such a change in the oceanic circulation or a modification of atmospheric circulation patterns related to northern high latitude cooling could play a key role in the climatic changes in the continental interior (Duan et al., 2016; Mikolajewicz et al., 1997; Wunsch, 2006).
In the Asian monsoonal region, there have been numerous studies of moisture changes during the YD period (e.g. An et al., 2012; Chen et al., 2015; Hong et al., 2010; Huang et al., 2012; Liu et al., 2008; Qiang et al., 2013; Russell et al., 2014; Shen et al., 2005; Stebich et al., 2011; Yancheva et al., 2007; Yang et al., 2016; Zhou et al., 2016); however, these results exhibit significant spatial differences. For example, the CaCO₃ record from Qinghai Lake on the northeastern Tibetan Plateau (An et al., 2012) suggested a dry climate during the YD period, which was interpreted as a response of the modification of atmospheric circulation patterns related to significant cooling in northern high latitudes (An et al., 2012), while the lipid-based paleohydrological record from Dajuwu peatland in the middle reaches of the Yangtze River (Huang et al., 2012) indicated an increased precipitation during that time, in response to the southward migration of the western Pacific subtropical high related to the decreases in the sea surface temperature (SST) in the western Pacific warm pool (WPWP) (Huang et al., 2012). In view of the uncertainties of a single proxy indicator and the inherent complexities in the interactions between different climatic factors such as precipitation, temperature, and evaporation, multidisciplinary investigations of records from the Asian monsoonal region are needed to provide more insights into the changes in each climatic factor and its possible driving mechanism during the YD period.

Dali Lake is located in the modern northern margin of the East Asian summer monsoon (EASM), where the regional climate is highly sensitive to the East Asian monsoon (EAM) (An, 2000). Endogenic carbonates precipitated in Dali Lake can provide important information on past changes in regional climate (Fan et al., 2016). This study presents high-resolution (~25 years) records of elements and stable isotopes of <38-µm calcites (endogenic carbonates) from a sediment core from Dali Lake during the interval from 15.5 to 10 cal. kyr BP. These new data, together with previously published data of TOC and TN concentrations (Fan et al., 2017) from the same sediment core, would enhance our knowledge of the climate history in the EASM margin during the last deglaciation and improve our understanding of the potential driving mechanisms of the EASM variability during the YD period.

Study area

Geography

Dali Lake (43°13′–43°23′ N, 116°29′–116°45′ E) is located in the northern margin of the E–W-extending Hulandaga Desert Land, 70 km west of Hexigten Banner, Inner Mongolia (Figure 1), in an inland fault-depression basin that was formed in the Pliocene to Pleistocene (Li, 1993). The lake has an area of 238 km², a maximum water depth of 11 m, an elevation of 1226 m above sea level (Figure 1), and is hydrologically closed. Hills of basaltic rocks surround the lake to the north and west, lacustrine plains are present along the eastern shore, and there is no outcrop of carbonate rocks in the catchment. Two permanent rivers, the Gongger and Salin Rivers, enter the lake from the northeast, and two intermittent streams, the Holai and Liangzi Rivers, enter from the southwest (Figure 1); however, there are no outflowing rivers. The Gongger River, the major inflow, rises in the southern terminal part of the Great Hinggan Mountains, where the elevation reaches 2029 m, and has a drainage area of 783 km² and a total channel length of 120 km (Li, 1993).

Climate

Dali Lake sits at the transition from semi-humid to semi-arid areas of the middle temperate zone. The climate of the region is mainly controlled by the EAM. In region, mean annual temperature is 3.2°C with a July average of 20.4°C and a January average of −16.6°C (Figure 2). Mean annual precipitation (MAP) is 383 mm, and ~70% of the annual precipitation falls from June to August (Figure 2). Mean annual evaporation reaches 1632 mm, which is more than four times the annual precipitation (Figure 2).

Water chemistry

The water of Dali Lake at present has an average pH of 9.5, an average salinity of 7.4 g/L, and an average alkalinity of 4.9 CaCO₃ g/L (Fan et al., 2016) (Table 1). The lake water contains major cations (average values) of Ca²⁺ (5.5 mg/L), Mg²⁺ (33.7 mg/L), K⁺ (266.3 mg/L), and Na⁺ (2516.7 mg/L), and major anions (average values) of CO₃²⁻ (644.3 mg/L), HCO₃⁻ (2336.0 mg/L), SO₄²⁻ (403.0 mg/L), and Cl⁻ (1753.3 mg/L) (Fan et al., 2016). The Mg/Ca molar ratio of lake water averages 8.3 (Fan et al., 2016). The δ¹⁸O and δD values of lake water average ~2.1‰ and ~22.5‰, respectively, while the δ¹³C (13C/12C) averages −0.3‰ (Fan et al., 2016) (Table 1). Data of chemical properties of water sampled from the inflowing rivers to the lake are shown in Table 1.

Materials and methods

Sediment coring and lithology

The DL04 core (43°15.68′ N, 116°36.26′ E) was extracted to a total depth of 11.83 m beneath the lake floor in the depocenter of Dali Lake (Xiao et al., 2008). The 7.71–11.83 m of the DL04 core is used for the present study (Figure 3). The sediments consist of blackish-gray to greenish-gray, massive silt, and can be divided into four main sedimentary units (Figure 3), as follows: 1183–985 cm grayish-black massive silt, 875–985 cm blackish-gray massive silt with greenish-gray bands at depths of 1183–1113 cm, 985–875 cm grayish-black massive silt, 875–789 cm blackish-gray massive silt, and 789–770 cm greenish-gray massive silt with occasional blackish-gray bands.

Chronology

In this study, the reservoir-corrected radiocarbon dates and age–depth model of the 7.71–11.83 m of the DL04 core are cited from Fan et al. (2017) (Figure 3; Table 2). The reservoir effect of Dali
Lake may have changed in different periods but it is difficult to obtain absolutely accurate dates because there is little terrestrial macrofossil or plant debris in the core sediments for accurate dating. The age–depth model indicates that the 7.71–11.83 m of the DL04 core covered the last deglaciation from 16 to 10 cal. kyr BP (Fan et al., 2017) (Figure 3; Table 2). The sedimentation rates of ca. 50–120 cm/kyr and sampling intervals of 1–3 cm in the present study provide potential temporal resolutions of ~25 years for the geochemical data.

X-ray diffractometry and scanning electron microscope analyses
Six representative bulk sediment samples are selected from the depths of 8.14 m (10.97 kyr BP), 8.17 m (11.01 kyr BP), 8.93 m (11.91 kyr BP), 8.95 m (11.93 kyr BP), 10.68 m (13.87 kyr BP), and 10.96 m (14.41 kyr BP) of the DL04 core and used for x-ray diffractometry (XRD) analyses. The compositions of minerals are determined with a Rigaku D/MAX–2400 XRD equipped with a graphite monochromator. Each sample is spread and leveled onto a 2 × 1.5 cm² concave glass plate for determinations with the XRD. The XRD employs the radiation of a Cu target at 40 KV, 60 mA to generate x-ray that irradiates a sample at a scanning angle of 2θ (2θ = 3°–70°) and produces the diffraction peaks of the sample. These peaks are filtered and monochromatized through the graphite monochromator, resulting in the characteristic diffraction peaks of minerals comprising the sample. The compositions of minerals in a sample are determined by comparison of the sample’s characteristic diffraction peaks with the standard card spectrum. Major peaks around 3.03 Å (2θ = 29.42°) reflect the dominance of calcite.

These six bulk sediment samples are sieved through a 400-mesh (38-µm pore size) sieve to obtain the <38-µm fractions, and the <38-µm sediments are used for the scanning electron microscope (SEM) analyses with a LEO1450VP SEM.

Elemental and isotopic analyses
The carbonate-rich horizons of the 7.71–11.83 m of the DL04 core are sampled at 1- to 3-cm intervals for the analyses of Ca and

Table 1. Chemical characteristic of water samples from Dali Lake and from the inflowing rivers.

| Water sample | pH | T (°C) | Salinity (g/L) | Alkalinity (CaCO₃ g/L) | Ca²⁺ (mg/L) | Mg²⁺ (mg/L) | K⁺ (mg/L) | Na⁺ (mg/L) | CO₃²⁻ (mg/L) | HCO₃⁻ (mg/L) | SO₄²⁻ (mg/L) | Cl⁻ (mg/L) | δ¹⁸O (‰) | δD (‰) | δ¹³CDIC (‰) |
|--------------|-----|--------|----------------|------------------------|-------------|-------------|-----------|-----------|-------------|-------------|-------------|-------------|-----------|---------|---------|-------------|
| Dali Lakea | 9.3 | 16.0 | 9.2 | 5.0 | 7.2 | 50.2 | 410.0 | 3120.0 | 643.0 | 2415.0 | 388.0 | 1710.0 | −2.1 | −20.3 | −0.2 |
| Dali Lakeb | 9.6 | 17.3 | 7.5 | 4.7 | 4.7 | 21.6 | 152.0 | 2360.0 | 622.0 | 225.3 | 396.0 | 1740.0 | −2.2 | −24.3 | −0.7 |
| Dali Lakec | 9.6 | 14.1 | 5.5 | 4.9 | 4.7 | 29.4 | 237.0 | 2070.0 | 668.0 | 2340.0 | 425.0 | 1810.0 | −2.1 | −22.8 | −0.1 |
| Gongger Riverd | 8.3 | 0.6 | 0.2 | 0.2 | 18.8 | 6.3 | 2.6 | 18.4 | 0 | 135.2 | 15.4 | 8.5 | −15.3 | −108.0 | −6.3 |
| Gongger Rivere | 8.7 | 21.6 | 0.2 | 0.2 | 3.0 | 8.4 | 2.6 | 16.6 | 6.1 | 122.6 | 7.1 | 6.5 | −10.8 | −80.9 | −9.3 |
| Salin Riverd | 9.0 | 10.5 | 0.5 | 0.5 | 2.1 | 25.5 | 8.1 | 62.1 | 12.4 | 290.9 | 10.2 | 24.5 | −4.6 | −42.1 | 2.5 |
| Salin Rivere | 7.9 | 21.0 | 0.4 | 0.4 | 21.2 | 23.1 | 10.8 | 55.8 | 0 | 256.2 | 9.2 | 20.4 | −3.4 | −36.6 | −2.0 |
| Liangzi Riverd | 8.1 | 0.5 | 0.2 | 0.2 | 15.1 | 7.2 | 1.8 | 15.4 | 0 | 138.4 | 5.1 | 4.6 | −10.1 | −71.7 | −6.2 |
| Liangzi Rivere | 7.4 | 15.7 | 0.2 | 0.2 | 30.6 | 9.4 | 4.1 | 15.8 | 0 | 151.2 | 5.9 | 5.1 | −10.2 | −71.8 | −9.7 |
| Holai Riverd | 8.5 | 1.9 | 0.3 | 0.3 | 17.2 | 13.3 | 2.1 | 25.0 | 0 | 188.7 | 11.6 | 8.0 | −9.2 | −74.7 | −7.6 |
| Holai Rivere | 7.9 | 14.1 | 0.3 | 0.4 | 36.5 | 17.5 | 5.1 | 23.9 | 0 | 219.2 | 12.8 | 8.8 | −10.2 | −69.8 | −10.5 |

Table 1. Chemical characteristic of water samples from Dali Lake and from the inflowing rivers.

a,b,cSampled in June 2010 from the central-northwestern, central-northeastern and central-southern parts of the lake.

dSampled during spring floods in April 2011.
eSampled during summer floods in August 2011.

The original data are cited from Fan et al. (2016).
Mg concentrations and δ18O and δ13C values of the <38-µm carbonates (n = 212). The bulk sediment samples are sieved through a 400-mesh to obtain the <38-µm fractions. The Ca and Mg concentrations of the carbonates in <38-µm sediments are determined with an ICP-OES. Each sample of 100 mg of <38-µm sediments is pre-treated with 40 mL of 1% acetic acid, and the acetic acid solution is diluted 1000 times with nitric acid solution for measurements of Ca and Mg concentrations at 14,030 cal. yr BP and most significant troughs of 0.98% and 0.26% for Ca and Mg concentrations at 14,030 cal. yr BP and 1.6% at 12,725 cal. yr BP; subsequently, δ18O values maintain an average of −3.5‰, while δ13C values exhibit an increasing trend and increase from 1.7‰ to 3.2‰ from 12,725 to 11,550 cal. yr BP.

Stage 3 (974–858 cm, 12,800–11,500 cal. yr BP)
During this stage, Ca and Mg concentrations increase rapidly from 1.18% to 3.54% and 0.33% to 0.78%, respectively, at 12,600 cal. yr BP, and then fluctuate around their averages of 1.50% and 0.38%, respectively, from 12,600 to 11,550 cal. yr BP. δ18O and δ13C values decrease rapidly to −5.5‰ and −3.7‰ at 12,750 cal. yr BP, and then increase rapidly to −3.6‰ and 1.6‰ at 12,725 cal. yr BP; subsequently, δ18O values maintain an average of −3.5‰, while δ13C values exhibit an increasing trend and decrease from 3.3‰ to 1.2‰.

Stage 1 (809–771 cm, 10,900–10,000 cal. yr BP)
This stage is characterized by rapid significant decreases of Ca and Mg concentrations and δ18O and δ13C values in the beginning. Ca and Mg concentrations decrease rapidly to 15.3%, 0.78%, and 0.24%, respectively, at 12,600 cal. yr BP, and then fluctuate around their averages of 1.50% and 0.38%, respectively, from 12,600 to 11,550 cal. yr BP. δ18O and δ13C values decrease rapidly to −5.5‰ and −3.7‰ at 12,750 cal. yr BP, and then increase rapidly to −3.6‰ and 1.6‰ at 12,725 cal. yr BP; subsequently, δ18O values maintain an average of −3.5‰, while δ13C values exhibit an increasing trend and decrease from 3.3‰ to 1.2‰.

Discussion
Implications of the geochemical proxies
Previous studies indicated that the <38-µm carbonates in the upper 6.39 m of the DL04 core were mainly of endogenous origin (Fan et al., 2016), based on the following evidence: (1) The Dali Lake basin is surrounded by hills of basaltic rocks to the west and north, and by mobile sand dunes to the south (Li, 1993), which implies that detrital calcites from the lake catchment should be negligible in the <38-µm carbonates of the lake sediments. (2) SEM images of the <38-µm sediments from two representative samples from the upper 6.39 m of the DL04 core exhibit granular, blocky, lenticular,
and prismatic idiomorphic carbonate crystals, indicating that the carbonate crystals are of endogenous origin and rapidly precipitated. (3) The data of δ¹⁸O values of summer lake water (δw) and of <38-µm calcites (δc) in surface sediments of the lake, and the summer lake water temperature (T) match the paleotemperature equation, for example, \(T = 13.8 - 4.58(\delta c - \delta w) + 0.08(\delta c - \delta w)^2 \), for the equilibrium fractionation of calcite precipitation in lake water (Leng and Marshall, 2004). In this study, the calcites from the 7.71–11.83 m of the DL04 core exhibit sharp peaks around 3.03 Å (29.42° 2θ) in the XRD diagram (Figure 4), implying that these calcites are generally well-ordered and less substituted. In addition, the <38-µm calcites or calcite aggregates are cubic or rhombohedral in the SEM images (Figure 5), supporting that they are mainly endogenous in origin (Jiménez-López et al., 2004).

The precipitation of endogenic carbonates in the lake water depends on the balance between ionic activity product (IAP) of \(\text{Ca}^{2+} \) and \(\text{CO}_3^{2-} \) and the equilibrium constant \(K_c \) (Lerman, 1978). The \(\text{Ca}^{2+} \) in the lake water is mainly controlled by the \(\text{Ca}^{2+} \) input for \(\text{Ca}^{2+} \)-limited saline lakes such as Qinghai Lake (An et al., 2012; Jin et al., 2010), whereas by strong evaporation in brackish lakes such as Daihai Lake (Shen et al., 2002; Xiao et al., 2006). Dali Lake is a brackish lake, and the concentrations of major ions (except for \(\text{Ca}^{2+} \)) in the lake water are much higher than those in the inflowing rivers (Table 1), suggesting that the strong evaporation of the lake water led to the super-saturation of \(\text{CaCO}_3 \) and the precipitation of \(\text{Ca}^{2+} \) as calcite (Fan et al., 2016). The \(\text{CO}_3^{2-} \) in the lake water is mainly controlled by the dissolved \(\text{CO}_2 \) concentration which is closely related to the lake water temperature and the biological activities (Chen et al., 2016; Liu et al., 2014). The \(K_c \) is mainly controlled by the temperature (Lerman, 1978). Previous studies indicated that the precipitation of endogenic calcites in the Dali Lake water was mainly controlled by strong evaporation.

Table 2. AMS radiocarbon dates of samples from the 7.71–11.83 m of the DL04 core.

<table>
<thead>
<tr>
<th>Laboratory number</th>
<th>Depth interval (cm)</th>
<th>Dating material</th>
<th>δ¹³C (%)</th>
<th>¹⁴C age (¹⁴C yr BP)</th>
<th>Corrected ¹⁴C age (¹⁴C yr BP)</th>
<th>Calibrated ¹⁴C age (cal. yr BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLD–12472</td>
<td>849–848</td>
<td>Organic matter</td>
<td>−30.84</td>
<td>10,464 ± 37</td>
<td>9992 ± 44</td>
<td>11,640–11,267</td>
</tr>
<tr>
<td>PLD–12474</td>
<td>899–898</td>
<td>Organic matter</td>
<td>−27.92</td>
<td>10,715 ± 34</td>
<td>10,243 ± 41</td>
<td>12,141–11,805</td>
</tr>
<tr>
<td>PLD–12477</td>
<td>950–949</td>
<td>Organic matter</td>
<td>−31.40</td>
<td>11,050 ± 35</td>
<td>10,578 ± 42</td>
<td>12,670–12,515</td>
</tr>
<tr>
<td>PLD–12478</td>
<td>999–998</td>
<td>Organic matter</td>
<td>−31.97</td>
<td>11,630 ± 38</td>
<td>11,158 ± 44</td>
<td>13,117–12,898</td>
</tr>
<tr>
<td>PLD–12483</td>
<td>1100–1099</td>
<td>Organic matter</td>
<td>−27.39</td>
<td>12,876 ± 42</td>
<td>12,404 ± 48</td>
<td>14,818–14,164</td>
</tr>
<tr>
<td>PLD–13857</td>
<td>1150–1149</td>
<td>Organic matter</td>
<td>−27.87</td>
<td>13,436 ± 39</td>
<td>12,964 ± 45</td>
<td>15,713–15,290</td>
</tr>
</tbody>
</table>

The original data are cited from Fan et al. (2017).

PLD: Paleo Labo Dating, laboratory code of Paleo Labo Co., Ltd, Japan.

Figure 4. X-ray diffractogram (XRD) (28°–32° 2θ) for six representative bulk sediment samples at the depths of (a) 8.14 m (10.97 kyr BP), (b) 8.17 m (11.01 kyr BP), (c) 8.93 m (11.91 kyr BP), (d) 8.95 m (11.93 kyr BP), (e) 10.68 m (13.87 kyr BP), and (f) 10.96 m (14.41 kyr BP) from the 7.11–11.83 m of the DL04 core. Major peaks occur around 3.03 Å (29.42° 2θ), reflecting dominance of calcite.
related to low precipitation in the region during the last 6000 cal.
yr (Fan et al., 2016). The results were supported by multi-proxy
data from the same sediment core (Fan et al., 2016). Dali Lake is
located in the semi-arid areas, and Ca$^{2+}$ and CO$_3^{2-}$ in the lake water
are preferentially precipitated as calcite when evaporation intensi-
fi es and dissolved CO$_2$ concentration decreases, both of which
should be mainly controlled by increases in regional temperature
during the last deglaciation when biological productivity was gen-
erally low and varied in small amplitudes (Fan et al., 2017). In the
water of Dali Lake, Mg$^{2+}$ concentrations are much higher than
Ca$^{2+}$ concentrations (Table 1), indicating that Mg$^{2+}$ is gradually
enriched when Ca$^{2+}$ is precipitated as calcite. Consequently, Mg$^{2+}$
is progressively incorporated into calcite when Mg$^{2+}$/Ca$^{2+}$ ratio
gradually increases (Fan et al., 2016). Therefore, increases in the
Ca and Mg concentrations of the endogenic calcites in Dali Lake
could indicate increases in regional temperature during the last
deglaciation, and vice versa; while significant decreases in the Ca
and Mg concentrations during the early Holocene may indicate the
fresh water input to the lake overwhelming the evaporative losses
(Fan et al., 2016).

The δ^{18}O values of lacustrine endogenic calcites are a function
of the δ^{18}O values and temperature of the lake water. An increase
of 1‰ in the calcite δ^{18}O values could be caused either by an
increase of 1‰ in the water δ^{18}O values or by a decrease of 4°C
($-2.5\%\circ\ ^\circ\mathrm{C}$) in the water temperature, or by a combination
of both, in the equilibrium of oxygen isotopic fractionation

![Figure 5. Scanning electron microscope (SEM) images of calcites in the <38-µm sediments from six representative samples at the depths
of (a) 8.14 m (10.97 kyr BP), (b) 8.17 m (11.01 kyr BP), (c) 8.93 m (11.91 kyr BP), (d) 8.95 m (11.93 kyr BP), (e) 10.68 m (13.87 kyr BP), and
(f) 10.96 m (14.41 kyr BP) from the 7.11–11.83 m of the DL04 core.](image-url)
The Holocene 28(7)

The δ18O values of endogenic calcites from the 7.71–11.83 m of the DL04 core show a large variation of up to 4.9‰ (Figure 6), implying that the water δ18O values should dominate the changes in the calcite δ18O values during the last deglaciation. The δ18O values of the lake water are mainly controlled by the ratio of precipitation to evaporation (relative humidity) in the region and the δ18O values of regional moisture related to the atmospheric temperature (+0.6‰/°C) (Dansgaard, 1964), assuming that the source water of precipitation in the region remains essentially unchanged (Liu et al., 2009; Qiang et al., 2017; Zhang et al., 2011). At present, the δ18O values of the Dali Lake water are much higher than those of the inflowing rivers (Table 1), suggesting that the strong evaporation has significant influence on the enrichment in 18O of the lake water (Fan et al., 2016). High temperature or low precipitation would be in favor of strong evaporation, which would result in high δ18O values of the lake water and the endogenic calcites, and vice versa. The degree of such isotopic enrichment could be strengthened by the prolonged residence time of the lake water (Talbot, 1990). In addition, high regional temperature would produce high δ18O values of regional moisture and thus of the lake water and the endogenic calcites. While significant decreases in the δ18O values of endogenic calcites during the early Holocene should indicate the increases in the isotopically lighter, terrestrial carbon input to the lake (Fan et al., 2017).

The δ13C values of lacustrine endogenic calcites are mainly controlled by the δ13C values of dissolved inorganic carbon (DIC) (δ13C_{DIC}) in the lake water which can be affected by various factors such as δ13C of the inflowing riverine DIC, primary productivity of the aquatic phytoplankton, burial and degradation of the sedimentary organic matter, and isotopic exchange between the lake’s DIC and atmospheric CO2 (Leng and Marshall, 2004; Talbot, 1990). The degree of 13C exchange between the lake’s DIC and atmospheric CO2 is closely related to the evaporation intensity; strong evaporation would enhance the exchange, and vice versa (Talbot, 1990). At present, the δ13C_{DIC} values of the Dali Lake water are much higher than those of the inflowing rivers (Table 1), denoting that the strong evaporation contributes to the 13C exchange between the lake’s DIC and atmospheric CO2, and thus the enrichment in 13C of the lake water (Fan et al., 2016). The positive correlations between δ13C and δ18O values of endogenic calcites from the Dali Lake sediments from 15,500 to 11,550 cal. yr BP (Figure 7) indicate that the 13C exchange between the lake’s DIC and atmospheric CO2 could be the dominant factor controlling variations in the δ13C_{DIC} values of the lake water during that time (Talbot, 1990). Strong evaporation induced by high temperature or low precipitation would enhance the 13C exchange, resulting in increases in the δ13C_{DIC} values of the lake water and thus endogenic calcites in the lake sediments. In addition, prolonged water residence time of the lake would help further enrichment of 13C_{DIC} in the lake water and thus in the endogenic calcites (Talbot, 1990). While decreases in the δ13C values of endogenic calcites during the early Holocene should indicate the increases in the isotopically lighter, terrestrial carbon input to the lake (Fan et al., 2017).

Climatic change in the Dali Lake region during the last deglaciation

The high-resolution time series of the data of Ca and Mg concentrations and δ18O and δ13C values of <38-µm calcites from the DL04 core from 15,500 to 10,000 cal. yr BP can potentially be used to reconstruct the detailed history of climatic change in the Dali Lake region during the last deglaciation (Figures 6 and 8).

From 15,500 to 12,800 cal. yr BP, Ca and Mg concentrations were generally high and exhibited increasing trends, suggesting that the evaporation intensity in the region gradually increased while the dissolved CO2 concentration in the lake water decreased related to gradual increases in regional temperature. The intervals of 15,200–15,050, 14,750–14,500, 14,100–13,900, and 13,700–13,350 cal. yr BP were marked by relatively lower regional temperature as indicated by relatively lower Ca and Mg concentrations. In addition,
δ13CDIC values of the lake water and thus endogenic calcites in

that the input of isotopically lighter, terrestrial carbon dominated
temperature on the low δ18O values of regional moisture. (Figure 6), which may be related to the influence of low regional

tion, from 12,700 to 11,550 cal. yr BP, the increasing trend of δ13C values from 11,550 to 10,900 cal. yr BP implies

values increased abruptly and then maintained high levels (Figure 6), suggesting that regional precipitation and temperature gradually increased before 12,800 cal. yr BP and signifi-

antly increased after 11,550 cal. yr BP, while they slightly decreased from 12,800 to 11,550 cal. yr BP (Fan et al., 2017) (Figure 8).

Although the response of biological productivity in the Dali Lake catchment to the climatic change might be nonlinear (Fan et al., 2017), the data of Ca and Mg concentrations and δ18O and δ13C values of endogenic calcites, together with the data of TOC and TN concentrations from the Dali Lake sediments (Fan et al., 2017), generally delineated a warm and wet climate from 15,000

to 12,800 cal. yr BP, which should be related to the weakening of the EASM margin. (Chen et al., 2015) and increased δ18O values of stalagmite from

Hulu Cave (32°30′ N, 119°10′ E) (Wang et al., 2001) (Figure 8). In addition, the temperature change was rapid and significant at the beginning and end of the period from 12,800 to 11,550 cal. yr BP (Figure 8).

Possible mechanisms for the YD event in the Dali Lake region

Previous studies on the δ18O record of Greenland ice (NGRIP) (increases in the δ18O values of Greenland ice indicate increases in the atmospheric temperature) indicated that there were several marked temperature fluctuations such as the Heinrich stadial 1 (H1), Bolling-Allerød (BA) warm phase, and the YD cold reversal occurring over northern high latitudes during the last deglaciation (Rasmussen et al., 2006). Among these events, the YD cold reversal (from 12,900 to 11,700 cal. yr BP) (Figure 8) is of special interest because it provides a possible similarity for the extreme events which may occur during the current global warming.

The data of elements and isotopes of endogenic calcites from the Dali Lake sediments suggested a significant cooling climate occurring in the period from 12,800 to 11,550 cal. yr BP (Figure 8). This event could be corresponded, within age uncertainties, to the YD cold reversal (Figure 8). It was suggested that the reduction in the AMOC could decrease the temperature in the NH during the YD period (Shakun and Carlson, 2010). It is likely that changes in the AMOC could have a great impact on the regional temperature in low latitude coastal areas. However, statistical data showed that the amplitude of the YD temperature anomaly increases with latitude in the NH (Shakun and Carlson, 2010), which implies that the cooling signal in northern high latitudes should have been propagated through an atmospheric teleconnection (Duan et al., 2016). In view of the abruptness of temperature change in the Dali Lake region at the beginning and end of the YD period (Figure 8), the atmosphere’s dynamic propagation was proposed as the primary and direct pattern of the temperature teleconnection between the North Atlantic region and the EASM margin.

The precipitation in the Dali Lake region decreased during the YD period, which should be related to the weakening of the EASM intensity as reflected by the decreased MAP reconstructed from pollen assemblages from Gonghai Lake (38°54′ N, 112°14′ E) (Chen et al., 2015) and increased δ18O values of stalagmite from Hulu Cave (32°30′ N, 119°10′ E) (Wang et al., 2001) (Figure 8).
Numerical modeling results have suggested that significant cooling in northern high latitudes could generate a low index of the North Atlantic Oscillation (NAO) and a negative index of Arctic Oscillation (AO), which would lead to a stronger flow of frigid polar air into the middle latitudes and a southward movement of the circumpolar airflow front (Bond et al., 2001; Shindell et al., 2001; Sung et al., 2006). The intensification of the circumpolar circulation over northern high latitudes could suppress the northward penetration of the EASM circulation (Sung et al., 2006), resulting in significant weakening of the monsoonal precipitation. Therefore, the decreased precipitation in the Dali Lake region should be dominantly driven by the significant cooling in northern high latitudes (Figure 8).

Dali Lake is located in the modern northern margin of the EASM (Figure 1). The tight linkage of abrupt climatic changes between the EASM margin and the northern high latitudes during the YD period may have, to some extent, been ascribed to the special geographical location of the semi-arid areas in middle latitudes for the EASM margin (Figure 1), that is far away from the monsoonal source areas but highly sensitive to the atmospheric disturbances from the northern high latitudes.

Conclusion

This study presents new high-resolution (~25 years) records of elements and stable isotopes of <38-µm calcites (endogenic calcites) from a sediment core from Dali Lake during the interval from 15.5 to 10,000 cal. yr BP. The increases in Ca and Mg concentrations of the endogenic calcites are interpreted as increased evaporation intensity and decreased dissolved CO₂ concentration of the lake water, which were related to increases in regional temperature during the last deglaciation. The positive correlations between δ¹³C and δ¹⁸O values of the endogenic calcites are interpreted as the result of changes in the intensity of evaporation in the region, which were associated with the variations in regional temperature and precipitation; high temperature or low precipitation would increase the evaporation intensity and thus the δ¹³C and δ¹⁸O values of the endogenic calcites. These data indicate that the climate in the Dali Lake region was relatively warm and wet before 12,800 and after 11,550 cal. yr BP. In addition, regional temperature decreased (increased) significantly at the beginning (end) of the period from 12,800 to 11,550 cal. yr BP, and regional precipitation decreased during this period. The climatic change inferred from the elements and isotopes of the endogenic calcites from the Dali Lake sediments was generally supported by the evidence from the data of sedimentary organic matter from the same sediment core.

The abruptness of the temperature change in the Dali Lake region in the EASM margin from 12,800 to 11,550 cal. yr BP could be corresponded, within age uncertainties, to the YD cold reversal occurring over northern high latitudes. The atmospheric coupling between the North Atlantic region and the EASM margin was proposed as the dominant pattern influencing the climatic change in the Dali Lake region during the YD event.

Acknowledgements

The authors would like to thank the editor Bryan Shuman and the anonymous reviewer for the improvement of this manuscript. Jiawei Fan is grateful to Professor Mingrui Qiang for constructive suggestions on the original version of this manuscript.

Funding

This study is supported by the National Key Research and Development Program of China (2017YFA0603400), National Natural Science Foundation of China (41702179, 41130101, and 41672166), and China Postdoctoral Science Foundation (2017M610111).
References
Chen FH, Xu QH, Chen JH et al. (2015) East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports 5: 11186.

